Add Tensordot op (#344)

This commit is contained in:
Diogo 2024-01-02 20:15:00 -05:00 committed by GitHub
parent af66a09bde
commit 0782a4573a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 198 additions and 1 deletions

View File

@ -10,7 +10,7 @@ MLX was developed with contributions from the following individuals:
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops.
- Juarez Bochi: Fixed bug in cross attention.
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
- Diogo Da Cruz: Added tri, tril, triu and safetensor support
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot` and safetensor support
# Third-Party Software

View File

@ -104,6 +104,7 @@ Operations
take_along_axis
tan
tanh
tensordot
transpose
tri
tril

View File

@ -2793,4 +2793,94 @@ array dequantize(
return w_full;
}
array tensordot(
const array& a,
const array& b,
const int dims /* = 2 */,
StreamOrDevice s /* = {} */
) {
if (dims < 0) {
throw std::invalid_argument(
"[tensordot] dims must be greater or equal to 0.");
}
if (dims > std::min(a.ndim(), b.ndim())) {
throw std::invalid_argument(
"[tensordot] dims must be less than the number of dimensions of a and b.");
}
std::vector<int> adims;
std::vector<int> bdims;
for (int i = 0; i < dims; i++) {
bdims.emplace_back(i);
adims.emplace_back(-dims + i);
}
return tensordot(a, b, {adims, bdims}, s);
}
array tensordot(
const array& a,
const array& b,
const std::pair<std::vector<int>, std::vector<int>>& dims,
StreamOrDevice s /* = {} */
) {
if (dims.first.size() != dims.second.size()) {
throw std::invalid_argument(
"[tensordot] dims[0] and dims[1] must have the same number of dimensions.");
}
if (a.dtype() != b.dtype()) {
throw std::invalid_argument(
"[tensordot] a and b must have the same dtype.");
}
int csize = 1;
auto x = a;
auto y = b;
for (int i = 0; i < dims.first.size(); i++) {
if (x.shape(dims.first.at(i)) == y.shape(dims.second.at(i))) {
csize *= x.shape(dims.first.at(i));
} else {
throw std::invalid_argument(
"[tensordot] a and b must have the same shape on the contracted axes.");
}
}
std::vector<bool> cdims1(x.ndim(), false);
std::vector<bool> cdims2(y.ndim(), false);
for (const auto n : dims.first) {
int n_ = (n < 0) ? n + x.ndim() : n;
cdims1[n_] = true;
}
for (const auto n : dims.second) {
int n_ = (n < 0) ? n + y.ndim() : n;
cdims2[n_] = true;
}
std::vector<int> t1;
std::vector<int> t2;
std::vector<int> rshape;
int size1 = 1;
int size2 = 1;
for (int i = 0; i < a.ndim(); i++) {
if (!cdims1[i]) {
t1.emplace_back(i);
size1 *= a.shape(i);
rshape.emplace_back(a.shape(i));
}
}
for (const auto x : dims.first) {
t1.emplace_back(x);
}
for (const auto x : dims.second) {
t2.emplace_back(x);
}
for (int i = 0; i < b.ndim(); i++) {
if (!cdims2[i]) {
t2.emplace_back(i);
size2 *= b.shape(i);
rshape.emplace_back(b.shape(i));
}
}
x = reshape(transpose(x, t1, s), {size1, csize}, s);
y = reshape(transpose(y, t2, s), {csize, size2}, s);
return reshape(matmul(x, y, s), rshape, s);
}
} // namespace mlx::core

View File

@ -1061,6 +1061,19 @@ array dequantize(
int bits = 4,
StreamOrDevice s = {});
/** TensorDot returns a contraction of a and b over multiple dimensions. */
array tensordot(
const array& a,
const array& b,
const int dims = 2,
StreamOrDevice s = {});
array tensordot(
const array& a,
const array& b,
const std::pair<std::vector<int>, std::vector<int>>& dims,
StreamOrDevice s = {});
/** Load array map from .safetensors file format */
std::unordered_map<std::string, array> load_safetensors(
std::shared_ptr<io::Reader> in_stream,

View File

@ -3194,4 +3194,44 @@ void init_ops(py::module_& m) {
Returns:
result (array): The dequantized version of ``w``
)pbdoc");
m.def(
"tensordot",
[](const array& a,
const array& b,
const std::variant<int, std::vector<std::vector<int>>>& dims,
StreamOrDevice s) {
if (auto pv = std::get_if<int>(&dims); pv) {
return tensordot(a, b, *pv, s);
} else {
auto x = std::get<std::vector<std::vector<int>>>(dims);
if (x.size() != 2) {
throw std::invalid_argument(
"[tensordot] dims must be a list of two lists.");
}
return tensordot(a, b, {x[0], x[1]}, s);
}
},
"a"_a,
"b"_a,
py::pos_only(),
"dims"_a = 2,
py::kw_only(),
"stream"_a = none,
R"pbdoc(
tensordot(a: array, b: array, /, dims: Union[int, List[List[int]]] = 2, *, stream: Union[None, Stream, Device] = None) -> array
Compute the tensor dot product along the specified axes.
Args:
a (array): Input array
b (array): Input array
dims (int or list(list(int)), optional): The number of dimensions to
sum over. If an integer is provided, then sum over the last
``dims`` dimensions of ``a`` and the first ``dims`` dimensions of
``b``. If a list of lists is provided, then sum over the
corresponding dimensions of ``a`` and ``b``. (default: 2)
Returns:
result (array): The tensor dot product.
)pbdoc");
}

View File

@ -1547,6 +1547,22 @@ class TestOps(mlx_tests.MLXTestCase):
expected_3 = np.repeat(data_3, 2, axis=0)
self.assertEqualArray(repeat_3, mx.array(expected_3))
def test_tensordot(self):
x = mx.arange(60.0).reshape(3, 4, 5)
y = mx.arange(24.0).reshape(4, 3, 2)
z = mx.tensordot(x, y, dims=([1, 0], [0, 1]))
self.assertEqualArray(z, mx.array(np.tensordot(x, y, axes=([1, 0], [0, 1]))))
x = mx.random.normal((3, 4, 5))
y = mx.random.normal((4, 5, 6))
z = mx.tensordot(x, y, dims=2)
self.assertEqualArray(z, mx.array(np.tensordot(x, y, axes=2)))
x = mx.random.normal((3, 5, 4, 6))
y = mx.random.normal((6, 4, 5, 3))
z = mx.tensordot(x, y, dims=([2, 1, 3], [1, 2, 0]))
self.assertEqualArray(
z, mx.array(np.tensordot(x, y, axes=([2, 1, 3], [1, 2, 0])))
)
if __name__ == "__main__":
unittest.main()

View File

@ -2277,4 +2277,41 @@ TEST_CASE("test repeat") {
// negative repeats
CHECK_THROWS_AS(repeat(data_3, -3, 0), std::invalid_argument);
}
TEST_CASE("tensordot") {
auto x = reshape(arange(60.), {3, 4, 5});
auto y = reshape(arange(24.), {4, 3, 2});
auto z = tensordot(x, y, {{1, 0}, {0, 1}});
auto expected = array(
{4400, 4730, 4532, 4874, 4664, 5018, 4796, 5162, 4928, 5306}, {5, 2});
CHECK(array_equal(z, expected).item<bool>());
x = reshape(arange(360.), {3, 4, 5, 6});
y = reshape(arange(360.), {6, 4, 5, 3});
CHECK_THROWS_AS(
tensordot(x, y, {{2, 1, 3}, {1, 2, 0}}), std::invalid_argument);
x = reshape(arange(60.), {3, 4, 5});
y = reshape(arange(120.), {4, 5, 6});
z = tensordot(x, y, 2);
expected = array(
{14820.,
15010.,
15200.,
15390.,
15580.,
15770.,
37620.,
38210.,
38800.,
39390.,
39980.,
40570.,
60420.,
61410.,
62400.,
63390.,
64380.,
65370.},
{3, 6});
CHECK(array_equal(z, expected).item<bool>());
}