mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 09:21:16 +08:00
Add Tensordot op (#344)
This commit is contained in:
parent
af66a09bde
commit
0782a4573a
@ -10,7 +10,7 @@ MLX was developed with contributions from the following individuals:
|
||||
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops.
|
||||
- Juarez Bochi: Fixed bug in cross attention.
|
||||
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
|
||||
- Diogo Da Cruz: Added tri, tril, triu and safetensor support
|
||||
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot` and safetensor support
|
||||
|
||||
# Third-Party Software
|
||||
|
||||
|
@ -104,6 +104,7 @@ Operations
|
||||
take_along_axis
|
||||
tan
|
||||
tanh
|
||||
tensordot
|
||||
transpose
|
||||
tri
|
||||
tril
|
||||
|
90
mlx/ops.cpp
90
mlx/ops.cpp
@ -2793,4 +2793,94 @@ array dequantize(
|
||||
return w_full;
|
||||
}
|
||||
|
||||
array tensordot(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const int dims /* = 2 */,
|
||||
StreamOrDevice s /* = {} */
|
||||
) {
|
||||
if (dims < 0) {
|
||||
throw std::invalid_argument(
|
||||
"[tensordot] dims must be greater or equal to 0.");
|
||||
}
|
||||
if (dims > std::min(a.ndim(), b.ndim())) {
|
||||
throw std::invalid_argument(
|
||||
"[tensordot] dims must be less than the number of dimensions of a and b.");
|
||||
}
|
||||
std::vector<int> adims;
|
||||
std::vector<int> bdims;
|
||||
for (int i = 0; i < dims; i++) {
|
||||
bdims.emplace_back(i);
|
||||
adims.emplace_back(-dims + i);
|
||||
}
|
||||
return tensordot(a, b, {adims, bdims}, s);
|
||||
}
|
||||
|
||||
array tensordot(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const std::pair<std::vector<int>, std::vector<int>>& dims,
|
||||
StreamOrDevice s /* = {} */
|
||||
) {
|
||||
if (dims.first.size() != dims.second.size()) {
|
||||
throw std::invalid_argument(
|
||||
"[tensordot] dims[0] and dims[1] must have the same number of dimensions.");
|
||||
}
|
||||
if (a.dtype() != b.dtype()) {
|
||||
throw std::invalid_argument(
|
||||
"[tensordot] a and b must have the same dtype.");
|
||||
}
|
||||
int csize = 1;
|
||||
auto x = a;
|
||||
auto y = b;
|
||||
for (int i = 0; i < dims.first.size(); i++) {
|
||||
if (x.shape(dims.first.at(i)) == y.shape(dims.second.at(i))) {
|
||||
csize *= x.shape(dims.first.at(i));
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[tensordot] a and b must have the same shape on the contracted axes.");
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<bool> cdims1(x.ndim(), false);
|
||||
std::vector<bool> cdims2(y.ndim(), false);
|
||||
for (const auto n : dims.first) {
|
||||
int n_ = (n < 0) ? n + x.ndim() : n;
|
||||
cdims1[n_] = true;
|
||||
}
|
||||
for (const auto n : dims.second) {
|
||||
int n_ = (n < 0) ? n + y.ndim() : n;
|
||||
cdims2[n_] = true;
|
||||
}
|
||||
|
||||
std::vector<int> t1;
|
||||
std::vector<int> t2;
|
||||
std::vector<int> rshape;
|
||||
int size1 = 1;
|
||||
int size2 = 1;
|
||||
for (int i = 0; i < a.ndim(); i++) {
|
||||
if (!cdims1[i]) {
|
||||
t1.emplace_back(i);
|
||||
size1 *= a.shape(i);
|
||||
rshape.emplace_back(a.shape(i));
|
||||
}
|
||||
}
|
||||
for (const auto x : dims.first) {
|
||||
t1.emplace_back(x);
|
||||
}
|
||||
for (const auto x : dims.second) {
|
||||
t2.emplace_back(x);
|
||||
}
|
||||
for (int i = 0; i < b.ndim(); i++) {
|
||||
if (!cdims2[i]) {
|
||||
t2.emplace_back(i);
|
||||
size2 *= b.shape(i);
|
||||
rshape.emplace_back(b.shape(i));
|
||||
}
|
||||
}
|
||||
x = reshape(transpose(x, t1, s), {size1, csize}, s);
|
||||
y = reshape(transpose(y, t2, s), {csize, size2}, s);
|
||||
return reshape(matmul(x, y, s), rshape, s);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
13
mlx/ops.h
13
mlx/ops.h
@ -1061,6 +1061,19 @@ array dequantize(
|
||||
int bits = 4,
|
||||
StreamOrDevice s = {});
|
||||
|
||||
/** TensorDot returns a contraction of a and b over multiple dimensions. */
|
||||
array tensordot(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const int dims = 2,
|
||||
StreamOrDevice s = {});
|
||||
|
||||
array tensordot(
|
||||
const array& a,
|
||||
const array& b,
|
||||
const std::pair<std::vector<int>, std::vector<int>>& dims,
|
||||
StreamOrDevice s = {});
|
||||
|
||||
/** Load array map from .safetensors file format */
|
||||
std::unordered_map<std::string, array> load_safetensors(
|
||||
std::shared_ptr<io::Reader> in_stream,
|
||||
|
@ -3194,4 +3194,44 @@ void init_ops(py::module_& m) {
|
||||
Returns:
|
||||
result (array): The dequantized version of ``w``
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"tensordot",
|
||||
[](const array& a,
|
||||
const array& b,
|
||||
const std::variant<int, std::vector<std::vector<int>>>& dims,
|
||||
StreamOrDevice s) {
|
||||
if (auto pv = std::get_if<int>(&dims); pv) {
|
||||
return tensordot(a, b, *pv, s);
|
||||
} else {
|
||||
auto x = std::get<std::vector<std::vector<int>>>(dims);
|
||||
if (x.size() != 2) {
|
||||
throw std::invalid_argument(
|
||||
"[tensordot] dims must be a list of two lists.");
|
||||
}
|
||||
return tensordot(a, b, {x[0], x[1]}, s);
|
||||
}
|
||||
},
|
||||
"a"_a,
|
||||
"b"_a,
|
||||
py::pos_only(),
|
||||
"dims"_a = 2,
|
||||
py::kw_only(),
|
||||
"stream"_a = none,
|
||||
R"pbdoc(
|
||||
tensordot(a: array, b: array, /, dims: Union[int, List[List[int]]] = 2, *, stream: Union[None, Stream, Device] = None) -> array
|
||||
|
||||
Compute the tensor dot product along the specified axes.
|
||||
|
||||
Args:
|
||||
a (array): Input array
|
||||
b (array): Input array
|
||||
dims (int or list(list(int)), optional): The number of dimensions to
|
||||
sum over. If an integer is provided, then sum over the last
|
||||
``dims`` dimensions of ``a`` and the first ``dims`` dimensions of
|
||||
``b``. If a list of lists is provided, then sum over the
|
||||
corresponding dimensions of ``a`` and ``b``. (default: 2)
|
||||
|
||||
Returns:
|
||||
result (array): The tensor dot product.
|
||||
)pbdoc");
|
||||
}
|
||||
|
@ -1547,6 +1547,22 @@ class TestOps(mlx_tests.MLXTestCase):
|
||||
expected_3 = np.repeat(data_3, 2, axis=0)
|
||||
self.assertEqualArray(repeat_3, mx.array(expected_3))
|
||||
|
||||
def test_tensordot(self):
|
||||
x = mx.arange(60.0).reshape(3, 4, 5)
|
||||
y = mx.arange(24.0).reshape(4, 3, 2)
|
||||
z = mx.tensordot(x, y, dims=([1, 0], [0, 1]))
|
||||
self.assertEqualArray(z, mx.array(np.tensordot(x, y, axes=([1, 0], [0, 1]))))
|
||||
x = mx.random.normal((3, 4, 5))
|
||||
y = mx.random.normal((4, 5, 6))
|
||||
z = mx.tensordot(x, y, dims=2)
|
||||
self.assertEqualArray(z, mx.array(np.tensordot(x, y, axes=2)))
|
||||
x = mx.random.normal((3, 5, 4, 6))
|
||||
y = mx.random.normal((6, 4, 5, 3))
|
||||
z = mx.tensordot(x, y, dims=([2, 1, 3], [1, 2, 0]))
|
||||
self.assertEqualArray(
|
||||
z, mx.array(np.tensordot(x, y, axes=([2, 1, 3], [1, 2, 0])))
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
@ -2277,4 +2277,41 @@ TEST_CASE("test repeat") {
|
||||
|
||||
// negative repeats
|
||||
CHECK_THROWS_AS(repeat(data_3, -3, 0), std::invalid_argument);
|
||||
}
|
||||
|
||||
TEST_CASE("tensordot") {
|
||||
auto x = reshape(arange(60.), {3, 4, 5});
|
||||
auto y = reshape(arange(24.), {4, 3, 2});
|
||||
auto z = tensordot(x, y, {{1, 0}, {0, 1}});
|
||||
auto expected = array(
|
||||
{4400, 4730, 4532, 4874, 4664, 5018, 4796, 5162, 4928, 5306}, {5, 2});
|
||||
CHECK(array_equal(z, expected).item<bool>());
|
||||
x = reshape(arange(360.), {3, 4, 5, 6});
|
||||
y = reshape(arange(360.), {6, 4, 5, 3});
|
||||
CHECK_THROWS_AS(
|
||||
tensordot(x, y, {{2, 1, 3}, {1, 2, 0}}), std::invalid_argument);
|
||||
x = reshape(arange(60.), {3, 4, 5});
|
||||
y = reshape(arange(120.), {4, 5, 6});
|
||||
z = tensordot(x, y, 2);
|
||||
expected = array(
|
||||
{14820.,
|
||||
15010.,
|
||||
15200.,
|
||||
15390.,
|
||||
15580.,
|
||||
15770.,
|
||||
37620.,
|
||||
38210.,
|
||||
38800.,
|
||||
39390.,
|
||||
39980.,
|
||||
40570.,
|
||||
60420.,
|
||||
61410.,
|
||||
62400.,
|
||||
63390.,
|
||||
64380.,
|
||||
65370.},
|
||||
{3, 6});
|
||||
CHECK(array_equal(z, expected).item<bool>());
|
||||
}
|
Loading…
Reference in New Issue
Block a user