mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-19 02:38:09 +08:00
Fast Inference SDPA op (#735)
* Fast Inference SDPA op Implements metal shaders for: o = mx.fast_inference_sdpa(queries, keys, values, scale, mask) Supports fp16, fp32 dtypes; assumes d_k = 128. Generic op support / prompt encoding supported via mlx primitives. Metal implementation is for the inference use case only. Majority of performance benefits appears to results from GQA & reduced bandwidth requirements; there is approximate performance parity for the MHA use case (from some measurements on M3 Max). * Flush shared memory to zero before unprotected reads for (scores @ values) * Move to fast:: namespace, address reviewer comments ... also attempt to revert formatter auto-change for files not relevant to this change * Shared memory flush to top of kernel * Resolve compiler warnings * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update python/src/fast.cpp Co-authored-by: Awni Hannun <awni.hannun@gmail.com> * Update docstring per PR feedback * Softmax in higher precision, ... * route to fallback for more use cases - batch size > 1, head_dim other than 128, etc. * Address linux build failure * Address other reviewer comments * Remove extraneous eval_cpu function per review --------- Co-authored-by: Atila Orhon <64497909+atiorh@users.noreply.github.com> Co-authored-by: Awni Hannun <awni.hannun@gmail.com> Co-authored-by: atila <atiorh@icloud.com>
This commit is contained in:
@@ -56,4 +56,44 @@ void init_extensions(py::module_& parent_module) {
|
||||
Returns:
|
||||
array: The output array.
|
||||
)pbdoc");
|
||||
|
||||
m.def(
|
||||
"scaled_dot_product_attention",
|
||||
[](const array& q,
|
||||
const array& k,
|
||||
const array& v,
|
||||
const float scale,
|
||||
const std::optional<array>& mask,
|
||||
const StreamOrDevice& s) {
|
||||
return fast::scaled_dot_product_attention(q, k, v, scale, mask, s);
|
||||
},
|
||||
"q"_a,
|
||||
"k"_a,
|
||||
"v"_a,
|
||||
py::kw_only(),
|
||||
"scale"_a,
|
||||
"mask"_a = none,
|
||||
"stream"_a = none,
|
||||
R"pbdoc(
|
||||
scaled_dot_product_attention(q: array, k: array, v: array, *, scale: float, mask: Union[None, array] = None, stream: Union[None, Stream, Device] = None) -> array
|
||||
|
||||
A fast implementation of multi-head attention: O = softmax(Q @ K.T, dim=-1) @ V.
|
||||
Supports [Multi-Head Attention](https://arxiv.org/abs/1706.03762), [Grouped Query Attention](https://arxiv.org/abs/2305.13245), and [Multi-Query Attention](https://arxiv.org/abs/1911.02150).
|
||||
|
||||
This function will dispatch to an optimized Metal kernel when the query sequence length is 1. It handles other cases with regular MLX operations.
|
||||
|
||||
Note: The softmax operation is performed in float32 precision regardless of input precision (float16 or float32).
|
||||
Note: For Grouped Query Attention and Multi-Query Attention, the input arrays for `key` and `value` should not be pre-tiled to match the `query` array.
|
||||
|
||||
Args:
|
||||
q (array): Input query array.
|
||||
k (array): Input keys array.
|
||||
v (array): Input values array.
|
||||
scale (float): Scale for queries (typically ``1.0 / sqrt(q.shape(-1)``)
|
||||
mask (array, optional): An additive mask to apply to the query-key scores.
|
||||
|
||||
Returns:
|
||||
array: The output array.
|
||||
|
||||
)pbdoc");
|
||||
}
|
||||
|
Reference in New Issue
Block a user