added atleast *args input support (#710)

* added atleast list(array) input support

* function overloading implemented

* Refactoring

* fixed formatting

* removed pos_only
This commit is contained in:
Hinrik Snær Guðmundsson
2024-02-26 14:17:59 -05:00
committed by GitHub
parent 3b661b7394
commit 08226ab491
5 changed files with 131 additions and 30 deletions

View File

@@ -3638,62 +3638,69 @@ void init_ops(py::module_& m) {
)pbdoc");
m.def(
"atleast_1d",
&atleast_1d,
"a"_a,
py::pos_only(),
[](const py::args& arys, StreamOrDevice s) -> py::object {
if (arys.size() == 1) {
return py::cast(atleast_1d(arys[0].cast<array>(), s));
}
return py::cast(atleast_1d(arys.cast<std::vector<array>>(), s));
},
py::kw_only(),
"stream"_a = none,
R"pbdoc(
atleast_1d(a: array, stream: Union[None, Stream, Device] = None) -> array
atleast_1d(*arys: array, stream: Union[None, Stream, Device] = None) -> Union[array, List[array]]
Convert array to have at least one dimension.
Convert all arrays to have at least one dimension.
args:
a (array): Input array
Args:
*arys: Input arrays.
stream (Union[None, Stream, Device], optional): The stream to execute the operation on.
Returns:
array: An array with at least one dimension.
array or list(array): An array or list of arrays with at least one dimension.
)pbdoc");
m.def(
"atleast_2d",
&atleast_2d,
"a"_a,
py::pos_only(),
[](const py::args& arys, StreamOrDevice s) -> py::object {
if (arys.size() == 1) {
return py::cast(atleast_2d(arys[0].cast<array>(), s));
}
return py::cast(atleast_2d(arys.cast<std::vector<array>>(), s));
},
py::kw_only(),
"stream"_a = none,
R"pbdoc(
atleast_2d(a: array, stream: Union[None, Stream, Device] = None) -> array
atleast_2d(*arys: array, stream: Union[None, Stream, Device] = None) -> Union[array, List[array]]
Convert array to have at least two dimensions.
Convert all arrays to have at least two dimensions.
args:
a (array): Input array
Args:
*arys: Input arrays.
stream (Union[None, Stream, Device], optional): The stream to execute the operation on.
Returns:
array: An array with at least two dimensions.
array or list(array): An array or list of arrays with at least two dimensions.
)pbdoc");
m.def(
"atleast_3d",
&atleast_3d,
"a"_a,
py::pos_only(),
[](const py::args& arys, StreamOrDevice s) -> py::object {
if (arys.size() == 1) {
return py::cast(atleast_3d(arys[0].cast<array>(), s));
}
return py::cast(atleast_3d(arys.cast<std::vector<array>>(), s));
},
py::kw_only(),
"stream"_a = none,
R"pbdoc(
atleast_3d(a: array, stream: Union[None, Stream, Device] = None) -> array
atleast_3d(*arys: array, stream: Union[None, Stream, Device] = None) -> Union[array, List[array]]
Convert array to have at least three dimensions.
Convert all arrays to have at least three dimensions.
args:
a (array): Input array
Args:
*arys: Input arrays.
stream (Union[None, Stream, Device], optional): The stream to execute the operation on.
Returns:
array: An array with at least three dimensions.
array or list(array): An array or list of arrays with at least three dimensions.
)pbdoc");
}

View File

@@ -1932,12 +1932,16 @@ class TestOps(mlx_tests.MLXTestCase):
[[[[1]], [[2]], [[3]]]],
]
for array in arrays:
mx_arrays = [mx.atleast_1d(mx.array(x)) for x in arrays]
atleast_arrays = mx.atleast_1d(*mx_arrays)
for i, array in enumerate(arrays):
mx_res = mx.atleast_1d(mx.array(array))
np_res = np.atleast_1d(np.array(array))
self.assertTrue(compare_nested_lists(mx_res.tolist(), np_res.tolist()))
self.assertEqual(mx_res.shape, np_res.shape)
self.assertEqual(mx_res.ndim, np_res.ndim)
self.assertTrue(mx.all(mx.equal(mx_res, atleast_arrays[i])))
def test_atleast_2d(self):
def compare_nested_lists(x, y):
@@ -1962,12 +1966,16 @@ class TestOps(mlx_tests.MLXTestCase):
[[[[1]], [[2]], [[3]]]],
]
for array in arrays:
mx_arrays = [mx.atleast_2d(mx.array(x)) for x in arrays]
atleast_arrays = mx.atleast_2d(*mx_arrays)
for i, array in enumerate(arrays):
mx_res = mx.atleast_2d(mx.array(array))
np_res = np.atleast_2d(np.array(array))
self.assertTrue(compare_nested_lists(mx_res.tolist(), np_res.tolist()))
self.assertEqual(mx_res.shape, np_res.shape)
self.assertEqual(mx_res.ndim, np_res.ndim)
self.assertTrue(mx.all(mx.equal(mx_res, atleast_arrays[i])))
def test_atleast_3d(self):
def compare_nested_lists(x, y):
@@ -1992,12 +2000,16 @@ class TestOps(mlx_tests.MLXTestCase):
[[[[1]], [[2]], [[3]]]],
]
for array in arrays:
mx_arrays = [mx.atleast_3d(mx.array(x)) for x in arrays]
atleast_arrays = mx.atleast_3d(*mx_arrays)
for i, array in enumerate(arrays):
mx_res = mx.atleast_3d(mx.array(array))
np_res = np.atleast_3d(np.array(array))
self.assertTrue(compare_nested_lists(mx_res.tolist(), np_res.tolist()))
self.assertEqual(mx_res.shape, np_res.shape)
self.assertEqual(mx_res.ndim, np_res.ndim)
self.assertTrue(mx.all(mx.equal(mx_res, atleast_arrays[i])))
if __name__ == "__main__":