mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-11-01 00:28:11 +08:00 
			
		
		
		
	Remove unused variables (#706)
This commit is contained in:
		| @@ -24,8 +24,6 @@ void _qmm_t_4_64( | ||||
|   constexpr int bitmask = (1 << bits) - 1; | ||||
|   constexpr int pack_factor = 32 / bits; | ||||
|   constexpr int packs_in_group = group_size / pack_factor; | ||||
|   const int Kg = K / group_size; | ||||
|   const int Kw = K / pack_factor; | ||||
|  | ||||
|   for (int m = 0; m < M; m++) { | ||||
|     const uint32_t* w_local = w; | ||||
|   | ||||
| @@ -410,7 +410,6 @@ void Compiled::eval_cpu( | ||||
|  | ||||
|   // Get the kernel name from the lib | ||||
|   int ndim = shape.size(); | ||||
|   bool dynamic = ndim >= 8; | ||||
|   auto kernel_name = kernel_lib_ + (contiguous ? "_contiguous" : "_strided_"); | ||||
|   if (!contiguous) { | ||||
|     kernel_name += std::to_string(shape.size()); | ||||
|   | ||||
| @@ -182,7 +182,6 @@ void implicit_gemm_conv_2D_gpu( | ||||
|  | ||||
|   int implicit_M = conv_params.N * conv_params.oS[0] * conv_params.oS[1]; | ||||
|   int implicit_N = conv_params.O; | ||||
|   int implicit_K = conv_params.wS[0] * conv_params.wS[1] * conv_params.C; | ||||
|  | ||||
|   size_t grid_dim_x = (implicit_N + bn - 1) / bn; | ||||
|   size_t grid_dim_y = (implicit_M + bm - 1) / bm; | ||||
|   | ||||
| @@ -167,10 +167,6 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) { | ||||
|  | ||||
|   auto& upd = inputs.back(); | ||||
|   size_t nthreads = upd.size(); | ||||
|   NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup(); | ||||
|   if (thread_group_size > nthreads) { | ||||
|     thread_group_size = nthreads; | ||||
|   } | ||||
|  | ||||
|   compute_encoder->setComputePipelineState(kernel); | ||||
|  | ||||
|   | ||||
| @@ -691,7 +691,6 @@ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) { | ||||
|   // organize into grid nkeys x elem_per_key | ||||
|   MTL::Size grid_dims = MTL::Size(num_keys, half_size + odd, 1); | ||||
|   NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup(); | ||||
|   auto nthreads = std::min(num_keys * (half_size + odd), thread_group_size); | ||||
|   MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1); | ||||
|   auto compute_encoder = d.get_command_encoder(s.index); | ||||
|   compute_encoder->setComputePipelineState(kernel); | ||||
|   | ||||
| @@ -114,7 +114,6 @@ void gguf_load_quantized( | ||||
|         << "has incompatible last dim shape: " << shape[shape.size() - 1]; | ||||
|     throw std::runtime_error(msg.str()); | ||||
|   } | ||||
|   const uint64_t num_blocks = tensor.num_weights / weights_per_block; | ||||
|  | ||||
|   std::vector<int> weights_shape = shape; | ||||
|   weights_shape.back() /= (weights_per_byte * 4); | ||||
|   | ||||
| @@ -628,7 +628,6 @@ std::vector<array> Convolution::vjp( | ||||
|   auto& wt = primals[1]; | ||||
|   auto cotan = cotangents[0]; | ||||
|  | ||||
|   int N = in.shape(0); | ||||
|   int O = wt.shape(0); | ||||
|  | ||||
|   // Resolve Padded input shapes and strides | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Jack Mousseau
					Jack Mousseau