mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 17:31:16 +08:00
added mse_loss, nll_loss and kl_div_loss (#98)
* added mse_loss, nll_loss and kl_div_loss * fixed axis not defined error in nll_loss * fixed axis not defined in kl_div_loss * added tests for mse, nll and kl_div * modified docstrings and added reduce helper func * updated docstring in kl_div_loss and moved helper func * added new kl divergence implementation * added reduction to test * updated docstring of kl_div_loss with correct spelling * added losses to nn.rst in docs
This commit is contained in:
parent
ac6dc5d3eb
commit
0b28399638
@ -180,3 +180,6 @@ Loss Functions
|
||||
|
||||
losses.cross_entropy
|
||||
losses.l1_loss
|
||||
losses.mse_loss
|
||||
losses.nll_loss
|
||||
losses.kl_div_loss
|
||||
|
@ -2,10 +2,9 @@
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
|
||||
def cross_entropy(
|
||||
logits: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
|
||||
):
|
||||
) -> mx.array:
|
||||
"""
|
||||
Computes the cross entropy loss between logits and targets.
|
||||
|
||||
@ -22,6 +21,84 @@ def cross_entropy(
|
||||
score = mx.take_along_axis(logits, targets[..., None], axis).squeeze(-1)
|
||||
loss = mx.logsumexp(logits, axis=axis) - score
|
||||
|
||||
return _reduce(loss, reduction)
|
||||
|
||||
|
||||
def l1_loss(predictions: mx.array, targets: mx.array, reduction: str = "none") -> mx.array:
|
||||
"""
|
||||
Computes the L1 loss between predictions and targets.
|
||||
|
||||
Args:
|
||||
predictions (mx.array): The predicted values.
|
||||
targets (mx.array): The target values.
|
||||
reduction (str, optional): Specifies the reduction to apply to the output:
|
||||
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
|
||||
|
||||
Returns:
|
||||
mx.array: The computed L1 loss.
|
||||
"""
|
||||
loss = mx.mean(mx.abs(predictions - targets))
|
||||
|
||||
return _reduce(loss, reduction)
|
||||
|
||||
|
||||
def mse_loss(predictions: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none") -> mx.array:
|
||||
"""
|
||||
Computes the mean squared error loss between predictions and targets.
|
||||
|
||||
Args:
|
||||
predictions (mx.array): The predicted values.
|
||||
targets (mx.array): The target values.
|
||||
axis (int, optional): The axis over which to compute softmax. Default: ``-1``.
|
||||
reduction (str, optional): Specifies the reduction to apply to the output:
|
||||
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
|
||||
|
||||
Returns:
|
||||
mx.array: The computed mean squared error loss.
|
||||
"""
|
||||
loss = mx.mean(mx.square(predictions - targets), axis)
|
||||
|
||||
return _reduce(loss, reduction)
|
||||
|
||||
|
||||
def nll_loss(logits: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none") -> mx.array:
|
||||
"""
|
||||
Computes the negative log likelihood loss between logits and targets.
|
||||
|
||||
Args:
|
||||
logits (mx.array): The predicted logits.
|
||||
targets (mx.array): The target values.
|
||||
axis (int, optional): The axis over which to compute softmax. Default: ``-1``.
|
||||
reduction (str, optional): Specifies the reduction to apply to the output:
|
||||
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
|
||||
|
||||
Returns:
|
||||
mx.array: The computed NLL loss.
|
||||
"""
|
||||
loss = -mx.take_along_axis(logits, targets[..., None], axis).squeeze(-1)
|
||||
|
||||
return _reduce(loss, reduction)
|
||||
|
||||
|
||||
def kl_div_loss(logits: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none") -> mx.array:
|
||||
"""
|
||||
Computes the Kullback-Leibler divergence loss between logits and targets.
|
||||
|
||||
Args:
|
||||
logits (mx.array): Logits for the distribution p.
|
||||
targets (mx.array): Log probabilities for the distribution q.
|
||||
axis (int, optional): The axis over which to compute softmax. Default: ``-1``.
|
||||
reduction (str, optional): Specifies the reduction to apply to the output:
|
||||
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
|
||||
|
||||
Returns:
|
||||
mx.array: The computed Kullback-Leibler divergence loss.
|
||||
"""
|
||||
loss = mx.sum(mx.exp(targets) * (targets - logits), axis)
|
||||
|
||||
return _reduce(loss, reduction)
|
||||
|
||||
def _reduce(loss: mx.array, reduction: str = 'none'):
|
||||
if reduction == "mean":
|
||||
return mx.mean(loss)
|
||||
elif reduction == "sum":
|
||||
@ -30,17 +107,3 @@ def cross_entropy(
|
||||
return loss
|
||||
else:
|
||||
raise ValueError("Invalid reduction. Must be 'none', 'mean', or 'sum'.")
|
||||
|
||||
|
||||
def l1_loss(predictions: mx.array, targets: mx.array):
|
||||
"""
|
||||
Computes the L1 loss between predictions and targets.
|
||||
|
||||
Args:
|
||||
predictions (mx.array): The predicted values.
|
||||
targets (mx.array): The target values.
|
||||
|
||||
Returns:
|
||||
mx.array: The computed L1 loss.
|
||||
"""
|
||||
return mx.mean(mx.abs(predictions - targets))
|
||||
|
@ -40,8 +40,67 @@ class TestNN(mlx_tests.MLXTestCase):
|
||||
def test_l1_loss(self):
|
||||
predictions = mx.array([0.5, 0.2, 0.9, 0.0])
|
||||
targets = mx.array([0.5, 0.2, 0.9, 0.0])
|
||||
losses = nn.losses.l1_loss(predictions, targets)
|
||||
losses = nn.losses.l1_loss(predictions, targets, reduction="none")
|
||||
self.assertEqual(losses, 0.0)
|
||||
|
||||
def test_mse_loss(self):
|
||||
predictions = mx.array([0.5, 0.2, 0.9, 0.0])
|
||||
targets = mx.array([0.7, 0.1, 0.8, 0.2])
|
||||
|
||||
# Test with reduction 'none'
|
||||
losses_none = nn.losses.mse_loss(predictions, targets, reduction="none")
|
||||
expected_none = mx.array([0.04, 0.01, 0.01, 0.04])
|
||||
self.assertTrue(mx.array_equal(losses_none, expected_none))
|
||||
|
||||
# Test with reduction 'mean'
|
||||
losses_mean = nn.losses.mse_loss(predictions, targets, reduction="mean")
|
||||
expected_mean = mx.mean(expected_none)
|
||||
self.assertEqual(losses_mean, expected_mean)
|
||||
|
||||
# Test with reduction 'sum'
|
||||
losses_sum = nn.losses.mse_loss(predictions, targets, reduction="sum")
|
||||
expected_sum = mx.sum(expected_none)
|
||||
self.assertEqual(losses_sum, expected_sum)
|
||||
|
||||
|
||||
def test_nll_loss(self):
|
||||
logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]])
|
||||
targets = mx.array([0, 1])
|
||||
|
||||
# Test with reduction 'none'
|
||||
losses_none = nn.losses.nll_loss(logits, targets, reduction="none")
|
||||
expected_none = mx.array([0.0, 0.0])
|
||||
self.assertTrue(mx.array_equal(losses_none, expected_none))
|
||||
|
||||
# Test with reduction 'mean'
|
||||
losses_mean = nn.losses.nll_loss(logits, targets, reduction="mean")
|
||||
expected_mean = mx.mean(expected_none)
|
||||
self.assertEqual(losses_mean, expected_mean)
|
||||
|
||||
# Test with reduction 'sum'
|
||||
losses_sum = nn.losses.nll_loss(logits, targets, reduction="sum")
|
||||
expected_sum = mx.sum(expected_none)
|
||||
self.assertEqual(losses_sum, expected_sum)
|
||||
|
||||
|
||||
def test_kl_div_loss(self):
|
||||
p_logits = mx.array([[1.0, 2.0], [0.5, 1.0]])
|
||||
q_logits = mx.array([[0.8, 1.5], [0.4, 1.2]])
|
||||
|
||||
# Test with reduction 'none'
|
||||
losses_none = nn.losses.kl_div_loss(p_logits, q_logits, reduction="none")
|
||||
expected_none = mx.array([0.22314353, 0.09966799])
|
||||
self.assertTrue(mx.array_equal(losses_none, expected_none))
|
||||
|
||||
# Test with reduction 'mean'
|
||||
losses_mean = nn.losses.kl_div_loss(p_logits, q_logits, reduction="mean")
|
||||
expected_mean = mx.mean(expected_none)
|
||||
self.assertEqual(losses_mean, expected_mean)
|
||||
|
||||
# Test with reduction 'sum'
|
||||
losses_sum = nn.losses.kl_div_loss(p_logits, q_logits, reduction="sum")
|
||||
expected_sum = mx.sum(expected_none)
|
||||
self.assertEqual(losses_sum, expected_sum)
|
||||
|
||||
def test_gelu(self):
|
||||
inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]
|
||||
|
Loading…
Reference in New Issue
Block a user