mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
Share more common code in Compiled (#2240)
* Share more common code in Compiled * Remove build_lib_name
This commit is contained in:
parent
5685ceb3c7
commit
0bb89e9e5f
@ -1,8 +1,7 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/graph_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
@ -79,55 +78,6 @@ std::string get_type_string(Dtype d) {
|
||||
}
|
||||
}
|
||||
|
||||
std::string build_lib_name(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
const std::vector<array>& tape,
|
||||
const std::unordered_set<uintptr_t>& constant_ids) {
|
||||
NodeNamer namer;
|
||||
std::ostringstream os;
|
||||
std::ostringstream constant_hasher;
|
||||
|
||||
// Fill the input names. This is not really necessary, I just like having A,
|
||||
// B, C, ... as the inputs.
|
||||
for (auto& x : inputs) {
|
||||
namer.get_name(x);
|
||||
}
|
||||
|
||||
// The primitives describing the tape. For unary and binary primitives this
|
||||
// must be enough to describe the full computation.
|
||||
for (auto& a : tape) {
|
||||
// name and type of output
|
||||
os << namer.get_name(a) << kindof(a.dtype()) << a.itemsize();
|
||||
// computation performed
|
||||
a.primitive().print(os);
|
||||
// name of inputs to the function
|
||||
for (auto& inp : a.inputs()) {
|
||||
os << namer.get_name(inp);
|
||||
}
|
||||
}
|
||||
os << "_";
|
||||
|
||||
for (auto& x : inputs) {
|
||||
if (constant_ids.find(x.id()) != constant_ids.end()) {
|
||||
os << "C";
|
||||
print_constant(constant_hasher, x);
|
||||
} else {
|
||||
os << (is_scalar(x) ? "S" : "V");
|
||||
}
|
||||
}
|
||||
os << "_";
|
||||
for (auto& x : inputs) {
|
||||
if (constant_ids.find(x.id()) != constant_ids.end()) {
|
||||
continue;
|
||||
}
|
||||
os << kindof(x.dtype()) << x.itemsize();
|
||||
}
|
||||
os << "_" << std::hash<std::string>{}(constant_hasher.str());
|
||||
|
||||
return os.str();
|
||||
}
|
||||
|
||||
bool compiled_check_contiguity(
|
||||
const std::vector<array>& inputs,
|
||||
const Shape& shape) {
|
||||
@ -159,8 +109,7 @@ bool compiled_check_contiguity(
|
||||
void compiled_allocate_outputs(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::vector<array>& inputs_,
|
||||
const std::unordered_set<uintptr_t>& constant_ids_,
|
||||
const std::function<bool(size_t)>& is_constant,
|
||||
bool contiguous) {
|
||||
if (contiguous) {
|
||||
int o = 0;
|
||||
@ -175,8 +124,7 @@ void compiled_allocate_outputs(
|
||||
// - Donatable
|
||||
// - Not a constant
|
||||
if (in.itemsize() == outputs[o].itemsize() && !is_scalar(in) &&
|
||||
in.is_donatable() &&
|
||||
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
|
||||
in.is_donatable() && is_constant(i)) {
|
||||
outputs[o++].copy_shared_buffer(in);
|
||||
}
|
||||
// Get representative input flags to properly set non-donated outputs
|
||||
@ -204,7 +152,7 @@ void compiled_allocate_outputs(
|
||||
// - Not a constant
|
||||
if (in.flags().row_contiguous && in.size() == outputs[o].size() &&
|
||||
in.itemsize() == outputs[o].itemsize() && in.is_donatable() &&
|
||||
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
|
||||
is_constant(i)) {
|
||||
outputs[o].copy_shared_buffer(
|
||||
in, outputs[o].strides(), in.flags(), in.data_size());
|
||||
o++;
|
||||
@ -216,4 +164,74 @@ void compiled_allocate_outputs(
|
||||
}
|
||||
}
|
||||
|
||||
std::tuple<bool, Shape, std::vector<Strides>> compiled_collapse_contiguous_dims(
|
||||
const std::vector<array>& inputs,
|
||||
const array& out,
|
||||
const std::function<bool(size_t)>& is_constant) {
|
||||
const Shape& shape = out.shape();
|
||||
bool contiguous = compiled_check_contiguity(inputs, shape);
|
||||
if (contiguous) {
|
||||
return {true, shape, {}};
|
||||
}
|
||||
|
||||
std::vector<Strides> strides_vec{out.strides()};
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
// Skip constants.
|
||||
if (is_constant(i)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Skip scalar inputs.
|
||||
const auto& x = inputs[i];
|
||||
if (is_scalar(x)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Broadcast the inputs to the output shape.
|
||||
Strides xstrides;
|
||||
size_t j = 0;
|
||||
for (; j < shape.size() - x.ndim(); ++j) {
|
||||
if (shape[j] == 1) {
|
||||
xstrides.push_back(out.strides()[j]);
|
||||
} else {
|
||||
xstrides.push_back(0);
|
||||
}
|
||||
}
|
||||
for (size_t i = 0; i < x.ndim(); ++i, ++j) {
|
||||
if (x.shape(i) == 1) {
|
||||
if (shape[j] == 1) {
|
||||
xstrides.push_back(out.strides()[j]);
|
||||
} else {
|
||||
xstrides.push_back(0);
|
||||
}
|
||||
} else {
|
||||
xstrides.push_back(x.strides()[i]);
|
||||
}
|
||||
}
|
||||
strides_vec.push_back(std::move(xstrides));
|
||||
}
|
||||
|
||||
auto tup = collapse_contiguous_dims(shape, strides_vec, INT32_MAX);
|
||||
return {false, std::move(std::get<0>(tup)), std::move(std::get<1>(tup))};
|
||||
}
|
||||
|
||||
bool compiled_use_large_index(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
bool contiguous) {
|
||||
if (contiguous) {
|
||||
size_t max_size = 0;
|
||||
for (const auto& in : inputs) {
|
||||
max_size = std::max(max_size, in.data_size());
|
||||
}
|
||||
return max_size > UINT32_MAX;
|
||||
} else {
|
||||
size_t max_size = 0;
|
||||
for (const auto& o : outputs) {
|
||||
max_size = std::max(max_size, o.size());
|
||||
}
|
||||
return max_size > UINT32_MAX;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@ -1,9 +1,8 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
#include <iomanip>
|
||||
#include <sstream>
|
||||
#include <unordered_set>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/primitives.h"
|
||||
@ -14,12 +13,6 @@ inline bool is_static_cast(const Primitive& p) {
|
||||
return (typeid(p) == typeid(Broadcast) || typeid(p) == typeid(AsType));
|
||||
}
|
||||
|
||||
std::string build_lib_name(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
const std::vector<array>& tape,
|
||||
const std::unordered_set<uintptr_t>& constant_ids);
|
||||
|
||||
std::string get_type_string(Dtype d);
|
||||
|
||||
template <typename T>
|
||||
@ -60,8 +53,19 @@ bool compiled_check_contiguity(
|
||||
void compiled_allocate_outputs(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::vector<array>& inputs_,
|
||||
const std::unordered_set<uintptr_t>& constant_ids_,
|
||||
const std::function<bool(size_t)>& is_constant,
|
||||
bool contiguous);
|
||||
|
||||
// Collapse contiguous dims ignoring scalars and constants.
|
||||
std::tuple<bool, Shape, std::vector<Strides>> compiled_collapse_contiguous_dims(
|
||||
const std::vector<array>& inputs,
|
||||
const array& out,
|
||||
const std::function<bool(size_t)>& is_constant);
|
||||
|
||||
// Return whether the kernel should use large index.
|
||||
bool compiled_use_large_index(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
bool contiguous);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@ -146,18 +146,9 @@ inline void build_kernel(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
const std::vector<array>& tape,
|
||||
const std::unordered_set<uintptr_t>& constant_ids,
|
||||
const std::function<bool(size_t)>& is_constant,
|
||||
bool contiguous,
|
||||
int ndim) {
|
||||
// All outputs should have the exact same shape and will be row contiguous
|
||||
auto output_shape = outputs[0].shape();
|
||||
auto output_strides = outputs[0].strides();
|
||||
|
||||
// Constants are scalars that are captured by value and cannot change
|
||||
auto is_constant = [&constant_ids](const array& x) {
|
||||
return constant_ids.find(x.id()) != constant_ids.end();
|
||||
};
|
||||
|
||||
NodeNamer namer;
|
||||
|
||||
#ifdef _MSC_VER
|
||||
@ -170,14 +161,15 @@ inline void build_kernel(
|
||||
|
||||
// Add the input arguments
|
||||
int cnt = 0;
|
||||
for (auto& x : inputs) {
|
||||
auto& xname = namer.get_name(x);
|
||||
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
// Skip constants from the input list
|
||||
if (is_constant(x)) {
|
||||
if (is_constant(i)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto& x = inputs[i];
|
||||
auto& xname = namer.get_name(x);
|
||||
|
||||
auto tstr = get_type_string(x.dtype());
|
||||
os << " " << tstr << "* " << xname << " = (" << tstr << "*)args[" << cnt++
|
||||
<< "];" << std::endl;
|
||||
@ -211,10 +203,11 @@ inline void build_kernel(
|
||||
}
|
||||
|
||||
// Read the inputs in tmps
|
||||
for (auto& x : inputs) {
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
const auto& x = inputs[i];
|
||||
auto& xname = namer.get_name(x);
|
||||
|
||||
if (is_constant(x)) {
|
||||
if (is_constant(i)) {
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = ";
|
||||
print_constant(os, x);
|
||||
os << ";" << std::endl;
|
||||
@ -264,8 +257,9 @@ inline void build_kernel(
|
||||
} else {
|
||||
for (int d = ndim - 1; d >= 0; --d) {
|
||||
// Update pointers
|
||||
for (auto& x : inputs) {
|
||||
if (is_constant(x) || is_scalar(x)) {
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
const auto& x = inputs[i];
|
||||
if (is_constant(i) || is_scalar(x)) {
|
||||
continue;
|
||||
}
|
||||
auto& xname = namer.get_name(x);
|
||||
@ -287,65 +281,37 @@ inline void build_kernel(
|
||||
void Compiled::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
if (kernel_lib_.empty()) {
|
||||
kernel_lib_ = build_lib_name(inputs_, outputs_, tape_, constant_ids_);
|
||||
}
|
||||
|
||||
// Figure out which kernel we are using
|
||||
auto& shape = outputs[0].shape();
|
||||
auto contiguous = compiled_check_contiguity(inputs, shape);
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
|
||||
// Handle all broadcasting and collect function input arguments
|
||||
// Collapse contiguous dims to route to a faster kernel if possible. Also
|
||||
// handle all broadcasting.
|
||||
auto [contiguous, shape, strides] =
|
||||
compiled_collapse_contiguous_dims(inputs, outputs[0], is_constant_);
|
||||
|
||||
// Collect function input arguments.
|
||||
std::vector<void*> args;
|
||||
std::vector<std::vector<size_t>> strides;
|
||||
for (int i = 0; i < inputs.size(); i++) {
|
||||
// Skip constants.
|
||||
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
|
||||
int strides_index = 1;
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
if (is_constant_(i)) {
|
||||
continue;
|
||||
}
|
||||
auto& x = inputs[i];
|
||||
const auto& x = inputs[i];
|
||||
encoder.set_input_array(x);
|
||||
args.push_back((void*)x.data<void>());
|
||||
|
||||
if (contiguous || is_scalar(x)) {
|
||||
continue;
|
||||
if (!contiguous && !is_scalar(x)) {
|
||||
args.push_back(strides[strides_index++].data());
|
||||
}
|
||||
|
||||
// Broadcast the input to the output shape.
|
||||
std::vector<size_t> xstrides;
|
||||
int j = 0;
|
||||
for (; j < shape.size() - x.ndim(); j++) {
|
||||
if (shape[j] == 1) {
|
||||
xstrides.push_back(outputs[0].strides()[j]);
|
||||
} else {
|
||||
xstrides.push_back(0);
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < x.ndim(); i++, j++) {
|
||||
if (x.shape(i) == 1) {
|
||||
if (shape[j] == 1) {
|
||||
xstrides.push_back(outputs[0].strides()[j]);
|
||||
} else {
|
||||
xstrides.push_back(0);
|
||||
}
|
||||
} else {
|
||||
xstrides.push_back(x.strides()[i]);
|
||||
}
|
||||
}
|
||||
strides.push_back(std::move(xstrides));
|
||||
args.push_back(strides.back().data());
|
||||
}
|
||||
|
||||
// Get the kernel name from the lib
|
||||
int ndim = shape.size();
|
||||
auto kernel_name = kernel_lib_ + (contiguous ? "_contiguous" : "_strided_");
|
||||
if (!contiguous) {
|
||||
kernel_name += std::to_string(shape.size());
|
||||
kernel_name += std::to_string(ndim);
|
||||
}
|
||||
|
||||
// Get the function
|
||||
auto fn_ptr = compile(kernel_name, [&]() {
|
||||
auto fn_ptr = compile(kernel_name, [&, contiguous = contiguous]() {
|
||||
std::ostringstream kernel;
|
||||
kernel << get_kernel_preamble() << std::endl;
|
||||
kernel << "extern \"C\" {" << std::endl;
|
||||
@ -355,7 +321,7 @@ void Compiled::eval_cpu(
|
||||
inputs_,
|
||||
outputs_,
|
||||
tape_,
|
||||
constant_ids_,
|
||||
is_constant_,
|
||||
contiguous,
|
||||
ndim);
|
||||
// Close extern "C"
|
||||
@ -363,26 +329,22 @@ void Compiled::eval_cpu(
|
||||
return kernel.str();
|
||||
});
|
||||
|
||||
compiled_allocate_outputs(
|
||||
inputs, outputs, inputs_, constant_ids_, contiguous);
|
||||
compiled_allocate_outputs(inputs, outputs, is_constant_, contiguous);
|
||||
|
||||
for (auto& x : outputs) {
|
||||
args.push_back(x.data<void>());
|
||||
encoder.set_output_array(x);
|
||||
}
|
||||
Shape out_shape;
|
||||
if (!contiguous) {
|
||||
out_shape = outputs[0].shape();
|
||||
args.push_back((void*)out_shape.data());
|
||||
args.push_back((void*)shape.data());
|
||||
} else {
|
||||
args.push_back((void*)outputs[0].data_size());
|
||||
}
|
||||
auto fun = (void (*)(void**))fn_ptr;
|
||||
encoder.dispatch(
|
||||
[fun,
|
||||
args = std::move(args),
|
||||
strides = std::move(strides),
|
||||
out_shape = std::move(out_shape)]() mutable { fun(args.data()); });
|
||||
encoder.dispatch([fun,
|
||||
args = std::move(args),
|
||||
strides = std::move(strides),
|
||||
shape = std::move(shape)]() mutable { fun(args.data()); });
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@ -11,8 +11,6 @@
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
using namespace fmt::literals;
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
inline void build_kernel(
|
||||
@ -21,21 +19,12 @@ inline void build_kernel(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
const std::vector<array>& tape,
|
||||
const std::unordered_set<uintptr_t>& constant_ids,
|
||||
const std::function<bool(size_t)>& is_constant,
|
||||
bool contiguous,
|
||||
int ndim,
|
||||
bool dynamic_dims,
|
||||
bool use_big_index = false,
|
||||
int work_per_thread = 1) {
|
||||
// All outputs should have the exact same shape and will be row contiguous
|
||||
auto output_shape = outputs[0].shape();
|
||||
auto output_strides = outputs[0].strides();
|
||||
|
||||
// Constants are scalars that are captured by value and cannot change
|
||||
auto is_constant = [&constant_ids](const array& x) {
|
||||
return constant_ids.find(x.id()) != constant_ids.end();
|
||||
};
|
||||
|
||||
NodeNamer namer;
|
||||
bool add_indices = false;
|
||||
int cnt = 0;
|
||||
@ -45,14 +34,15 @@ inline void build_kernel(
|
||||
"[[host_name(\"{0}\")]]\n[[kernel]] void {0}(\n", kernel_name);
|
||||
|
||||
// Add the input arguments
|
||||
for (auto& x : inputs) {
|
||||
auto& xname = namer.get_name(x);
|
||||
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
// Skip constants from the input list
|
||||
if (is_constant(x)) {
|
||||
if (is_constant(i)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto& x = inputs[i];
|
||||
auto& xname = namer.get_name(x);
|
||||
|
||||
// Scalars and contiguous need no strides
|
||||
if (!is_scalar(x) && !contiguous) {
|
||||
add_indices = true;
|
||||
@ -80,8 +70,6 @@ inline void build_kernel(
|
||||
}
|
||||
// Add output strides and shape to extract the indices.
|
||||
if (!contiguous) {
|
||||
os += fmt::format(
|
||||
" constant const int64_t* output_strides [[buffer({0})]],\n", cnt++);
|
||||
os += fmt::format(
|
||||
" constant const int* output_shape [[buffer({0})]],\n", cnt++);
|
||||
} else {
|
||||
@ -125,7 +113,7 @@ inline void build_kernel(
|
||||
auto& x = inputs[i];
|
||||
auto& xname = namer.get_name(x);
|
||||
|
||||
if (is_constant(x)) {
|
||||
if (is_constant(i)) {
|
||||
auto type_str = get_type_string(x.dtype());
|
||||
std::ostringstream ss;
|
||||
print_constant(ss, x);
|
||||
@ -271,11 +259,6 @@ inline void build_kernel(
|
||||
void Compiled::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
// Make the name for the kernel library
|
||||
if (kernel_lib_.empty()) {
|
||||
kernel_lib_ = build_lib_name(inputs_, outputs_, tape_, constant_ids_);
|
||||
}
|
||||
|
||||
// Get the kernel if someone else built it already
|
||||
auto& s = stream();
|
||||
auto& d = metal::device(s.device);
|
||||
@ -290,7 +273,7 @@ void Compiled::eval_gpu(
|
||||
inputs_,
|
||||
outputs_,
|
||||
tape_,
|
||||
constant_ids_,
|
||||
is_constant_,
|
||||
/* contiguous = */ true,
|
||||
/* ndim = */ 0,
|
||||
/* dynamic_dims = */ false,
|
||||
@ -302,7 +285,7 @@ void Compiled::eval_gpu(
|
||||
inputs_,
|
||||
outputs_,
|
||||
tape_,
|
||||
constant_ids_,
|
||||
is_constant_,
|
||||
/* contiguous = */ true,
|
||||
/* ndim = */ 0,
|
||||
/* dynamic_dims = */ false,
|
||||
@ -315,7 +298,7 @@ void Compiled::eval_gpu(
|
||||
inputs_,
|
||||
outputs_,
|
||||
tape_,
|
||||
constant_ids_,
|
||||
is_constant_,
|
||||
/* contiguous = */ false,
|
||||
/* ndim = */ i,
|
||||
/* dynamic_dims = */ false,
|
||||
@ -328,7 +311,7 @@ void Compiled::eval_gpu(
|
||||
inputs_,
|
||||
outputs_,
|
||||
tape_,
|
||||
constant_ids_,
|
||||
is_constant_,
|
||||
/* contiguous = */ false,
|
||||
/* ndim = */ i,
|
||||
/* dynamic_dims = */ false,
|
||||
@ -342,7 +325,7 @@ void Compiled::eval_gpu(
|
||||
inputs_,
|
||||
outputs_,
|
||||
tape_,
|
||||
constant_ids_,
|
||||
is_constant_,
|
||||
/* contiguous = */ false,
|
||||
/* ndim = */ 0,
|
||||
/* dynamic_dims = */ true,
|
||||
@ -354,7 +337,7 @@ void Compiled::eval_gpu(
|
||||
inputs_,
|
||||
outputs_,
|
||||
tape_,
|
||||
constant_ids_,
|
||||
is_constant_,
|
||||
/* contiguous = */ false,
|
||||
/* ndim = */ 0,
|
||||
/* dynamic_dims = */ true,
|
||||
@ -363,70 +346,13 @@ void Compiled::eval_gpu(
|
||||
return kernel;
|
||||
});
|
||||
|
||||
// Figure out which kernel we are using
|
||||
auto& output_shape = outputs[0].shape();
|
||||
auto contiguous = compiled_check_contiguity(inputs, output_shape);
|
||||
|
||||
// Collapse contiguous dims to route to a faster kernel if possible. Also
|
||||
// handle all broadcasting.
|
||||
std::vector<Strides> initial_strides;
|
||||
initial_strides.push_back(outputs[0].strides());
|
||||
Shape shape;
|
||||
std::vector<Strides> strides;
|
||||
if (!contiguous) {
|
||||
for (int i = 0; i < inputs.size(); i++) {
|
||||
// Skip constants.
|
||||
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
|
||||
continue;
|
||||
}
|
||||
auto& x = inputs[i];
|
||||
auto [contiguous, shape, strides] =
|
||||
compiled_collapse_contiguous_dims(inputs, outputs[0], is_constant_);
|
||||
|
||||
// Skip scalar inputs.
|
||||
if (is_scalar(x)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Broadcast the inputs to the output shape.
|
||||
Strides xstrides;
|
||||
int j = 0;
|
||||
for (; j < output_shape.size() - x.ndim(); j++) {
|
||||
if (output_shape[j] == 1) {
|
||||
xstrides.push_back(outputs[0].strides()[j]);
|
||||
} else {
|
||||
xstrides.push_back(0);
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < x.ndim(); i++, j++) {
|
||||
if (x.shape(i) == 1) {
|
||||
if (output_shape[j] == 1) {
|
||||
xstrides.push_back(outputs[0].strides()[j]);
|
||||
} else {
|
||||
xstrides.push_back(0);
|
||||
}
|
||||
} else {
|
||||
xstrides.push_back(x.strides()[i]);
|
||||
}
|
||||
}
|
||||
initial_strides.push_back(std::move(xstrides));
|
||||
}
|
||||
std::tie(shape, strides) =
|
||||
collapse_contiguous_dims(output_shape, initial_strides, INT32_MAX);
|
||||
}
|
||||
|
||||
bool large;
|
||||
if (contiguous) {
|
||||
size_t max_size = 0;
|
||||
for (auto& in : inputs) {
|
||||
max_size = std::max(max_size, in.data_size());
|
||||
}
|
||||
large = (max_size > UINT32_MAX);
|
||||
} else {
|
||||
size_t max_size = 0;
|
||||
for (auto& o : outputs) {
|
||||
max_size = std::max(max_size, o.size());
|
||||
}
|
||||
large = (max_size > UINT32_MAX);
|
||||
}
|
||||
// Whether to use large index.
|
||||
bool large = compiled_use_large_index(inputs, outputs, contiguous);
|
||||
|
||||
// Get the kernel from the lib
|
||||
int ndim = shape.size();
|
||||
@ -451,7 +377,7 @@ void Compiled::eval_gpu(
|
||||
int stride_idx = 1; // idx 0 is the output strides
|
||||
Strides in_strides;
|
||||
for (int i = 0; i < inputs.size(); i++) {
|
||||
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
|
||||
if (is_constant_(i)) {
|
||||
continue;
|
||||
}
|
||||
auto& x = inputs[i];
|
||||
@ -468,8 +394,7 @@ void Compiled::eval_gpu(
|
||||
compute_encoder.set_vector_bytes(in_strides, cnt++);
|
||||
}
|
||||
|
||||
compiled_allocate_outputs(
|
||||
inputs, outputs, inputs_, constant_ids_, contiguous);
|
||||
compiled_allocate_outputs(inputs, outputs, is_constant_, contiguous);
|
||||
|
||||
// Put the outputs in
|
||||
for (auto& x : outputs) {
|
||||
@ -478,7 +403,6 @@ void Compiled::eval_gpu(
|
||||
|
||||
// Put the output shape and strides in
|
||||
if (!contiguous) {
|
||||
compute_encoder.set_vector_bytes(strides[0], cnt++);
|
||||
compute_encoder.set_vector_bytes(shape, cnt++);
|
||||
} else {
|
||||
auto size = outputs[0].data_size();
|
||||
|
@ -1,16 +1,20 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
#include <cstdlib>
|
||||
#include <map>
|
||||
#include <sstream>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/compile.h"
|
||||
#include "mlx/compile_impl.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
#include "mlx/graph_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/transforms.h"
|
||||
#include "mlx/transforms_impl.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@ -82,7 +86,54 @@ Compiled::Compiled(
|
||||
inputs_(std::move(inputs)),
|
||||
outputs_(std::move(outputs)),
|
||||
tape_(std::move(tape)),
|
||||
constant_ids_(std::move(constant_ids)) {}
|
||||
constant_ids_(std::move(constant_ids)),
|
||||
is_constant_([this](size_t i) {
|
||||
return constant_ids_.find(inputs_[i].id()) != constant_ids_.end();
|
||||
}) {
|
||||
// Build the kernel name.
|
||||
NodeNamer namer;
|
||||
std::ostringstream os;
|
||||
std::ostringstream constant_hasher;
|
||||
|
||||
// Fill the input names. This is not really necessary, I just like having A,
|
||||
// B, C, ... as the inputs.
|
||||
for (const auto& x : inputs_) {
|
||||
namer.get_name(x);
|
||||
}
|
||||
|
||||
// The primitives describing the tape. For unary and binary primitives this
|
||||
// must be enough to describe the full computation.
|
||||
for (const auto& a : tape_) {
|
||||
// name and type of output
|
||||
os << namer.get_name(a) << kindof(a.dtype()) << a.itemsize();
|
||||
// computation performed
|
||||
a.primitive().print(os);
|
||||
// name of inputs to the function
|
||||
for (auto& inp : a.inputs()) {
|
||||
os << namer.get_name(inp);
|
||||
}
|
||||
}
|
||||
os << "_";
|
||||
|
||||
for (const auto& x : inputs_) {
|
||||
if (constant_ids_.find(x.id()) != constant_ids_.end()) {
|
||||
os << "C";
|
||||
print_constant(constant_hasher, x);
|
||||
} else {
|
||||
os << (is_scalar(x) ? "S" : "V");
|
||||
}
|
||||
}
|
||||
os << "_";
|
||||
for (const auto& x : inputs) {
|
||||
if (constant_ids.find(x.id()) != constant_ids.end()) {
|
||||
continue;
|
||||
}
|
||||
os << kindof(x.dtype()) << x.itemsize();
|
||||
}
|
||||
os << "_" << std::hash<std::string>{}(constant_hasher.str());
|
||||
|
||||
kernel_lib_ = os.str();
|
||||
}
|
||||
|
||||
std::vector<array> Compiled::vjp(
|
||||
const std::vector<array>&,
|
||||
|
@ -627,6 +627,7 @@ class Compiled : public Primitive {
|
||||
const std::vector<array> outputs_;
|
||||
const std::vector<array> tape_;
|
||||
const std::unordered_set<uintptr_t> constant_ids_;
|
||||
const std::function<bool(size_t)> is_constant_;
|
||||
|
||||
std::string kernel_lib_;
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user