run precommit

This commit is contained in:
junwoo-yun 2023-12-25 07:50:54 +08:00
parent 297e69017c
commit 0e0557b756

View File

@ -1,7 +1,7 @@
# Copyright © 2023 Apple Inc.
import math
from typing import Any, Optional, Callable
from typing import Any, Callable, Optional
import mlx.core as mx
from mlx.nn.layers.activations import relu
@ -133,7 +133,7 @@ class TransformerEncoderLayer(Module):
y = self.dropout2(y)
y = self.linear2(y)
y = x + y
else:
y = self.attention(x, x, x, mask)
y = self.dropout1(y)
@ -144,17 +144,26 @@ class TransformerEncoderLayer(Module):
y = self.dropout2(y)
y = self.linear2(y)
y = self.ln2(x + y)
return y
class TransformerEncoder(Module):
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None, dropout: float = 0.0, norm_first: bool = False, activation = relu
self,
num_layers: int,
dims: int,
num_heads: int,
mlp_dims: Optional[int] = None,
dropout: float = 0.0,
norm_first: bool = False,
activation=relu,
):
super().__init__()
self.layers = [
TransformerEncoderLayer(dims, num_heads, mlp_dims, dropout, norm_first, activation)
TransformerEncoderLayer(
dims, num_heads, mlp_dims, dropout, norm_first, activation
)
for i in range(num_layers)
]
self.ln = LayerNorm(dims)
@ -210,7 +219,7 @@ class TransformerDecoderLayer(Module):
y = self.dropout3(y)
y = self.linear2(y)
x = x + y
else:
y = self.self_attention(x, x, x, x_mask)
y = self.dropout1(y)
@ -231,11 +240,20 @@ class TransformerDecoderLayer(Module):
class TransformerDecoder(Module):
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None, dropout: float = 0.0, norm_first: bool = False, activation = relu
self,
num_layers: int,
dims: int,
num_heads: int,
mlp_dims: Optional[int] = None,
dropout: float = 0.0,
norm_first: bool = False,
activation=relu,
):
super().__init__()
self.layers = [
TransformerDecoderLayer(dims, num_heads, mlp_dims, dropout, norm_first, activation)
TransformerDecoderLayer(
dims, num_heads, mlp_dims, dropout, norm_first, activation
)
for i in range(num_layers)
]
self.ln = LayerNorm(dims)
@ -261,15 +279,16 @@ class Transformer(Module):
num_heads (int): The number of heads in the multi-head attention models.
num_encoder_layers (int): The number of sub-encoder-layers in the Transformer encoder.
num_decoder_layers (int): The number of sub-decoder-layers in the Transformer decoder.
mlp_dims (Optional[int]): The dimensionality of the feedforward network model in each Transformer layer.
mlp_dims (Optional[int]): The dimensionality of the feedforward network model in each Transformer layer.
Defaults to 4*dims if not provided.
dropout (float): The dropout value for Transformer encoder/decoder.
activation (Callable[[Any], Any]): the activation function of encoder/decoder intermediate layer
custom_encoder (Optional[Any]): A custom encoder to replace the standard Transformer encoder.
custom_decoder (Optional[Any]): A custom decoder to replace the standard Transformer decoder.
custom_encoder (Optional[Any]): A custom encoder to replace the standard Transformer encoder.
custom_decoder (Optional[Any]): A custom decoder to replace the standard Transformer decoder.
norm_first (bool): if ``True``, encoder and decoder layers will perform LayerNorms before
other attention and feedforward operations, otherwise after. Default is``False``.
"""
def __init__(
self,
dims: int = 512,
@ -281,21 +300,33 @@ class Transformer(Module):
activation: Callable[[Any], Any] = relu,
custom_encoder: Optional[Any] = None,
custom_decoder: Optional[Any] = None,
norm_first: bool = False
norm_first: bool = False,
):
super().__init__()
if custom_encoder is not None:
self.encoder = custom_encoder
else:
self.encoder = TransformerEncoder(
num_encoder_layers, dims, num_heads, mlp_dims, dropout, activation, norm_first
num_encoder_layers,
dims,
num_heads,
mlp_dims,
dropout,
activation,
norm_first,
)
if custom_decoder is not None:
self.decoder = custom_decoder
else:
self.decoder = TransformerDecoder(
num_decoder_layers, dims, num_heads, mlp_dims, dropout, activation, norm_first
num_decoder_layers,
dims,
num_heads,
mlp_dims,
dropout,
activation,
norm_first,
)
def __call__(self, src, tgt, src_mask, tgt_mask, memory_mask):