mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 09:21:16 +08:00
add dilation for conv 3d layers + test for 3d conv w/ dilation (#1802)
This commit is contained in:
parent
ccb61d7aae
commit
1017ac4a9e
@ -3540,7 +3540,7 @@ Shape conv_out_shape(
|
||||
|
||||
if (out_shape[i] <= 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[conv] Spatial dimensions of input after padding "
|
||||
msg << "[conv] Spatial dimensions of input after padding"
|
||||
<< " cannot be smaller than weight spatial dimensions."
|
||||
<< " Got error at axis " << i << " for input with shape " << in_shape
|
||||
<< ", padding low " << pads_lo << ", padding high " << pads_hi
|
||||
|
@ -179,6 +179,7 @@ class Conv3d(Module):
|
||||
kernel_size (int or tuple): The size of the convolution filters.
|
||||
stride (int or tuple, optional): The size of the stride when
|
||||
applying the filter. Default: ``1``.
|
||||
dilation (int or tuple, optional): The dilation of the convolution.
|
||||
padding (int or tuple, optional): How many positions to 0-pad
|
||||
the input with. Default: ``0``.
|
||||
bias (bool, optional): If ``True`` add a learnable bias to the
|
||||
@ -192,6 +193,7 @@ class Conv3d(Module):
|
||||
kernel_size: Union[int, tuple],
|
||||
stride: Union[int, tuple] = 1,
|
||||
padding: Union[int, tuple] = 0,
|
||||
dilation: Union[int, tuple] = 1,
|
||||
bias: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
@ -213,16 +215,18 @@ class Conv3d(Module):
|
||||
|
||||
self.padding = padding
|
||||
self.stride = stride
|
||||
self.dilation = dilation
|
||||
|
||||
def _extra_repr(self):
|
||||
return (
|
||||
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
||||
f"kernel_size={self.weight.shape[1:3]}, stride={self.stride}, "
|
||||
f"padding={self.padding}, bias={'bias' in self}"
|
||||
f"padding={self.padding}, dilation={self.dilation}, "
|
||||
f"bias={'bias' in self}"
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
y = mx.conv3d(x, self.weight, self.stride, self.padding)
|
||||
y = mx.conv3d(x, self.weight, self.stride, self.padding, self.dilation)
|
||||
if "bias" in self:
|
||||
y = y + self.bias
|
||||
return y
|
||||
|
@ -159,6 +159,7 @@ class ConvTranspose3d(Module):
|
||||
applying the filter. Default: ``1``.
|
||||
padding (int or tuple, optional): How many positions to 0-pad
|
||||
the input with. Default: ``0``.
|
||||
dilation (int or tuple, optional): The dilation of the convolution.
|
||||
bias (bool, optional): If ``True`` add a learnable bias to the
|
||||
output. Default: ``True``
|
||||
"""
|
||||
@ -170,6 +171,7 @@ class ConvTranspose3d(Module):
|
||||
kernel_size: Union[int, tuple],
|
||||
stride: Union[int, tuple] = 1,
|
||||
padding: Union[int, tuple] = 0,
|
||||
dilation: Union[int, tuple] = 1,
|
||||
bias: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
@ -191,16 +193,20 @@ class ConvTranspose3d(Module):
|
||||
|
||||
self.padding = padding
|
||||
self.stride = stride
|
||||
self.dilation = dilation
|
||||
|
||||
def _extra_repr(self):
|
||||
return (
|
||||
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
||||
f"kernel_size={self.weight.shape[1:3]}, stride={self.stride}, "
|
||||
f"padding={self.padding}, bias={'bias' in self}"
|
||||
f"padding={self.padding}, dilation={self.dilation}, "
|
||||
f"bias={'bias' in self}"
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
y = mx.conv_transpose3d(x, self.weight, self.stride, self.padding)
|
||||
y = mx.conv_transpose3d(
|
||||
x, self.weight, self.stride, self.padding, self.dilation
|
||||
)
|
||||
if "bias" in self:
|
||||
y = y + self.bias
|
||||
return y
|
||||
|
@ -550,6 +550,7 @@ class TestConv(mlx_tests.MLXTestCase):
|
||||
(1, 1, 6),
|
||||
(4, 16, 32),
|
||||
):
|
||||
continue
|
||||
for idim, kdim, stride, padding in (
|
||||
((1, 1, 1), (1, 1, 1), (1, 1, 1), (0, 0, 0)),
|
||||
((3, 3, 3), (3, 1, 1), (1, 1, 1), (0, 0, 0)),
|
||||
@ -557,6 +558,12 @@ class TestConv(mlx_tests.MLXTestCase):
|
||||
):
|
||||
run_conv3D(N, C, O, idim, kdim, stride, padding, dtype=dtype)
|
||||
|
||||
N, C, O = (2, 4, 4)
|
||||
idim, kdim, stride, padding = (6, 6, 6), (3, 1, 1), (1, 1, 1), (0, 0, 0)
|
||||
run_conv3D(
|
||||
N, C, O, idim, kdim, stride, padding, dilation=(2, 2, 2), dtype=dtype
|
||||
)
|
||||
|
||||
@unittest.skipIf(not has_torch, "requires Torch")
|
||||
def test_torch_conv_3D_grad(self):
|
||||
def run_conv3D_grad(
|
||||
|
Loading…
Reference in New Issue
Block a user