Faster contiguous gather for indices in the first axis (#2552)

* faster contiguous gather for indices in the first axis

* work per thread > 1

* angelos suggestion for scales / biases
This commit is contained in:
Awni Hannun
2025-08-28 21:26:30 -07:00
committed by GitHub
parent 827003d568
commit 111f1e71af
10 changed files with 97 additions and 33 deletions

View File

@@ -33,10 +33,11 @@ make_jit_source(unary_ops kernels/erf.h kernels/expm1f.h)
make_jit_source(binary_ops)
make_jit_source(ternary_ops)
make_jit_source(reduce_utils kernels/atomic.h kernels/reduction/ops.h)
make_jit_source(scatter kernels/indexing.h)
make_jit_source(gather kernels/indexing.h)
make_jit_source(gather_axis)
make_jit_source(scatter_axis)
make_jit_source(indexing/scatter kernels/indexing/indexing.h)
make_jit_source(indexing/gather kernels/indexing/indexing.h)
make_jit_source(indexing/gather_front kernels/indexing/indexing.h)
make_jit_source(indexing/gather_axis)
make_jit_source(indexing/scatter_axis)
make_jit_source(hadamard)
if(MLX_METAL_JIT)

View File

@@ -52,8 +52,10 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& s = stream();
auto& d = metal::device(s.device);
int idx_ndim = nidx ? inputs[1].ndim() : 0;
size_t ndim = src.ndim();
size_t slice_size = 1;
for (auto s : slice_sizes_) {
slice_size *= s;
}
bool large_index = nidx && inputs[1].size() > INT32_MAX;
bool large_src = src.size() > INT32_MAX;
@@ -61,6 +63,55 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
bool large = large_index || large_src || large_out;
std::string idx_type_name = nidx ? type_to_name(inputs[1]) : "";
if (src.flags().row_contiguous && nidx == 1 && axes_[0] == 0 &&
inputs[1].flags().row_contiguous && slice_size == src.strides()[0]) {
int work_per_thread = (slice_size > 8 && src.dtype().size() < 4) ? 2 : 1;
auto& indices = inputs[1];
std::string kernel_name = fmt::format(
"gather_front{0}_{1}_{2}_{3}",
type_to_name(out),
idx_type_name,
large ? "int64_t" : "int",
work_per_thread);
std::string lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
std::string kernel_source = metal::utils();
kernel_source += metal::gather_front();
kernel_source += get_template_definition(
kernel_name,
"gather_front",
get_type_string(out.dtype()),
get_type_string(indices.dtype()),
large ? "int64_t" : "int",
work_per_thread);
return kernel_source;
});
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kernel_name, lib);
compute_encoder.set_compute_pipeline_state(kernel);
size_t dim_x = (slice_size + work_per_thread - 1) / work_per_thread;
size_t dim_y = indices.size();
auto group_dims = get_block_dims(dim_x, dim_y, 1);
MTL::Size grid_dims = MTL::Size(dim_x, dim_y, 1);
compute_encoder.set_input_array(src, 0);
compute_encoder.set_input_array(indices, 1);
compute_encoder.set_output_array(out, 2);
compute_encoder.set_bytes(slice_size, 3);
compute_encoder.set_bytes(src.shape(0), 4);
compute_encoder.dispatch_threads(grid_dims, group_dims);
return;
}
int idx_ndim = nidx ? inputs[1].ndim() : 0;
size_t ndim = src.ndim();
std::string kernel_name = fmt::format(
"gather{0}{1}_{2}_{3}_{4}",
type_to_name(out),
@@ -96,11 +147,6 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
auto kernel = d.get_kernel(kernel_name, lib);
compute_encoder.set_compute_pipeline_state(kernel);
size_t slice_size = 1;
for (auto s : slice_sizes_) {
slice_size *= s;
}
// Launch 3D grid of threads
// First two dimensions for the indices, the last one for the slice
size_t dim0 = 1;

View File

@@ -19,6 +19,7 @@ const char* binary_two();
const char* copy();
const char* fft();
const char* gather_axis();
const char* gather_front();
const char* hadamard();
const char* logsumexp();
const char* quantized_utils();

View File

@@ -2,7 +2,7 @@
#pragma once
#include "mlx/backend/metal/kernels/indexing.h"
#include "mlx/backend/metal/kernels/indexing/indexing.h"
template <typename T, typename IdxT, int NIDX, int IDX_NDIM, typename LocT>
METAL_FUNC void gather_impl(

View File

@@ -0,0 +1,24 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/metal/kernels/indexing/indexing.h"
template <typename T, typename IdxT, typename LocT, int N>
[[kernel]] void gather_front(
const device T* src,
const device IdxT* indices,
device T* out,
const constant int64_t& stride,
const constant int& size,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto idx = offset_neg_idx(indices[index.y], size);
LocT src_idx = static_cast<LocT>(stride) * idx;
LocT out_idx = static_cast<LocT>(stride) * index.y;
int s_idx = N * index.x;
for (int i = 0; i < N && s_idx < stride; ++i, ++s_idx) {
out[out_idx + s_idx] = src[src_idx + s_idx];
}
}

View File

@@ -2,7 +2,7 @@
#pragma once
#include "mlx/backend/metal/kernels/indexing.h"
#include "mlx/backend/metal/kernels/indexing/indexing.h"
template <
typename T,

View File

@@ -98,11 +98,10 @@ class QuantizedEmbedding(Module):
# Initialize the quantized weight
scale = math.sqrt(1 / dims)
weight = mx.random.normal(shape=(num_embeddings, dims), scale=scale)
self.weight, *scales_biases = mx.quantize(weight, group_size, bits, mode=mode)
if mode == "affine":
self.scales, self.biases = scales_biases
else:
(self.scales,) = scales_biases
self.weight, self.scales, *biases = mx.quantize(
weight, group_size, bits, mode=mode
)
self.biases = biases[0] if biases else None
self.num_embeddings = num_embeddings
self.dims = dims
@@ -155,16 +154,13 @@ class QuantizedEmbedding(Module):
"""Create a :obj:`QuantizedEmbedding` layer from an :obj:`Embedding` layer."""
embedding_dims, dims = embedding_layer.weight.shape
ql = cls(embedding_dims, dims, group_size, bits, mode=mode)
ql.weight, *scales_biases = mx.quantize(
ql.weight, ql.scales, *biases = mx.quantize(
embedding_layer.weight,
group_size,
bits,
mode=mode,
)
if mode == "affine":
ql.scales, ql.biases = scales_biases
else:
(ql.scales,) = scales_biases
ql.biases = biases[0] if biases else None
return ql
@@ -214,11 +210,10 @@ class QuantizedLinear(Module):
high=scale,
shape=(output_dims, input_dims),
)
self.weight, *scales_biases = mx.quantize(weight, group_size, bits, mode=mode)
if mode == "affine":
self.scales, self.biases = scales_biases
else:
(self.scales,) = scales_biases
self.weight, self.scales, *biases = mx.quantize(
weight, group_size, bits, mode=mode
)
self.biases = biases[0] if biases else None
# And bias if needed
if bias:
@@ -261,16 +256,13 @@ class QuantizedLinear(Module):
"""Create a :obj:`QuantizedLinear` layer from a :obj:`Linear` layer."""
output_dims, input_dims = linear_layer.weight.shape
ql = cls(input_dims, output_dims, False, group_size, bits, mode=mode)
ql.weight, *scales_biases = mx.quantize(
ql.weight, ql.scales, *biases = mx.quantize(
linear_layer.weight,
group_size,
bits,
mode=mode,
)
if mode == "affine":
ql.scales, ql.biases = scales_biases
else:
(ql.scales,) = scales_biases
ql.biases = biases[0] if biases else None
if "bias" in linear_layer:
ql.bias = linear_layer.bias