Refactor common into cpu specific and truly common (#1817)

* refactor

* fix extension example

* fix no-cpu
This commit is contained in:
Awni Hannun
2025-02-03 15:58:02 -08:00
committed by GitHub
parent ec7c7def40
commit 1156c84e86
72 changed files with 1426 additions and 1434 deletions

View File

@@ -7,8 +7,6 @@
namespace mlx::core {
namespace {
// TODO: Add support for more combinations of input types.
enum class TernaryOpType {
ScalarScalarScalar,
@@ -16,7 +14,7 @@ enum class TernaryOpType {
General,
};
TernaryOpType
inline TernaryOpType
get_ternary_op_type(const array& a, const array& b, const array& c) {
TernaryOpType topt;
if (a.data_size() == 1 && b.data_size() == 1 && c.data_size() == 1) {
@@ -33,7 +31,7 @@ get_ternary_op_type(const array& a, const array& b, const array& c) {
return topt;
}
void set_ternary_op_output_data(
inline void set_ternary_op_output_data(
const array& a,
const array& b,
const array& c,
@@ -76,152 +74,5 @@ void set_ternary_op_output_data(
break;
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op, int D>
void ternary_op_dims(
const T1* a,
const T2* b,
const T3* c,
U* out,
Op op,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& c_strides,
const Strides& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
auto stride_c = c_strides[axis];
auto stride_out = out_strides[axis];
auto N = shape[axis];
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
ternary_op_dims<T1, T2, T3, U, Op, D - 1>(
a,
b,
c,
out,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
axis + 1);
} else {
*out = op(*a, *b, *c);
}
a += stride_a;
b += stride_b;
c += stride_c;
out += stride_out;
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dispatch_dims(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
auto [shape, strides] = collapse_contiguous_dims(
a.shape(), {a.strides(), b.strides(), c.strides(), out.strides()});
const auto& a_strides = strides[0];
const auto& b_strides = strides[1];
const auto& c_strides = strides[2];
const auto& out_strides = strides[3];
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* out_ptr = out.data<T3>();
int ndim = shape.size();
switch (ndim) {
case 1:
ternary_op_dims<T1, T2, T3, U, Op, 1>(
a_ptr,
b_ptr,
c_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
0);
return;
case 2:
ternary_op_dims<T1, T2, T3, U, Op, 2>(
a_ptr,
b_ptr,
c_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
0);
return;
}
ContiguousIterator a_it(shape, a_strides, ndim - 2);
ContiguousIterator b_it(shape, b_strides, ndim - 2);
ContiguousIterator c_it(shape, c_strides, ndim - 2);
auto stride = out_strides[ndim - 3];
for (size_t elem = 0; elem < a.size(); elem += stride) {
ternary_op_dims<T1, T2, T3, U, Op, 2>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
c_ptr + c_it.loc,
out_ptr + elem,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
ndim - 2);
a_it.step();
b_it.step();
c_it.step();
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
TernaryOpType topt = get_ternary_op_type(a, b, c);
set_ternary_op_output_data(a, b, c, out, topt);
// The full computation is scalar-scalar-scalar so we call the base op once.
if (topt == TernaryOpType::ScalarScalarScalar) {
*(out.data<U>()) = op(*a.data<T1>(), *b.data<T2>(), *c.data<T3>());
} else if (topt == TernaryOpType::VectorVectorVector) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* out_ptr = out.data<U>();
for (size_t i = 0; i < out.size(); ++i) {
*out_ptr = op(*a_ptr, *b_ptr, *c_ptr);
a_ptr++;
b_ptr++;
c_ptr++;
out_ptr++;
}
} else {
ternary_op_dispatch_dims<T1, T2, T3, U>(a, b, c, out, op);
}
}
} // namespace
} // namespace mlx::core