mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Refactor common into cpu specific and truly common (#1817)
* refactor * fix extension example * fix no-cpu
This commit is contained in:
370
mlx/backend/cpu/binary.h
Normal file
370
mlx/backend/cpu/binary.h
Normal file
@@ -0,0 +1,370 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
|
||||
#include "mlx/backend/cpu/simd/simd.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <typename Op>
|
||||
struct VectorScalar {
|
||||
Op op;
|
||||
|
||||
VectorScalar(Op op_) : op(op_) {}
|
||||
|
||||
template <typename T, typename U>
|
||||
void operator()(const T* a, const T* b, U* dst, int size) {
|
||||
T scalar = *b;
|
||||
constexpr int N = simd::max_size<T>;
|
||||
while (size >= N) {
|
||||
simd::store(dst, op(simd::load<T, N>(a), simd::Simd<T, N>(scalar)));
|
||||
dst += N;
|
||||
a += N;
|
||||
size -= N;
|
||||
}
|
||||
while (size-- > 0) {
|
||||
*dst = op(*a, scalar);
|
||||
dst++;
|
||||
a++;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Op>
|
||||
struct ScalarVector {
|
||||
Op op;
|
||||
|
||||
ScalarVector(Op op_) : op(op_) {}
|
||||
|
||||
template <typename T, typename U>
|
||||
void operator()(const T* a, const T* b, U* dst, int size) {
|
||||
T scalar = *a;
|
||||
constexpr int N = simd::max_size<T>;
|
||||
while (size >= N) {
|
||||
simd::store(dst, op(simd::Simd<T, N>(scalar), simd::load<T, N>(b)));
|
||||
dst += N;
|
||||
b += N;
|
||||
size -= N;
|
||||
}
|
||||
while (size-- > 0) {
|
||||
*dst = op(scalar, *b);
|
||||
dst++;
|
||||
b++;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Op>
|
||||
struct VectorVector {
|
||||
Op op;
|
||||
|
||||
VectorVector(Op op_) : op(op_) {}
|
||||
|
||||
template <typename T, typename U>
|
||||
void operator()(const T* a, const T* b, U* dst, int size) {
|
||||
constexpr int N = simd::max_size<T>;
|
||||
while (size >= N) {
|
||||
simd::store(dst, op(simd::load<T, N>(a), simd::load<T, N>(b)));
|
||||
dst += N;
|
||||
a += N;
|
||||
b += N;
|
||||
size -= N;
|
||||
}
|
||||
while (size-- > 0) {
|
||||
*dst = op(*a, *b);
|
||||
dst++;
|
||||
a++;
|
||||
b++;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename Op, int D, bool Strided>
|
||||
void binary_op_dims(
|
||||
const T* a,
|
||||
const T* b,
|
||||
U* out,
|
||||
Op op,
|
||||
const Shape& shape,
|
||||
const Strides& a_strides,
|
||||
const Strides& b_strides,
|
||||
const Strides& out_strides,
|
||||
int axis) {
|
||||
auto stride_a = a_strides[axis];
|
||||
auto stride_b = b_strides[axis];
|
||||
auto stride_out = out_strides[axis];
|
||||
auto N = shape[axis];
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
if constexpr (D > 1) {
|
||||
binary_op_dims<T, U, Op, D - 1, Strided>(
|
||||
a, b, out, op, shape, a_strides, b_strides, out_strides, axis + 1);
|
||||
} else {
|
||||
if constexpr (Strided) {
|
||||
op(a, b, out, stride_out);
|
||||
} else {
|
||||
*out = op(*a, *b);
|
||||
}
|
||||
}
|
||||
out += stride_out;
|
||||
a += stride_a;
|
||||
b += stride_b;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, bool Strided, typename Op>
|
||||
void binary_op_dispatch_dims(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
int dim,
|
||||
const Shape& shape,
|
||||
const Strides& a_strides,
|
||||
const Strides& b_strides,
|
||||
const Strides& out_strides) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* out_ptr = out.data<U>();
|
||||
switch (dim) {
|
||||
case 1:
|
||||
binary_op_dims<T, U, Op, 1, Strided>(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
out_ptr,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
0);
|
||||
return;
|
||||
case 2:
|
||||
binary_op_dims<T, U, Op, 2, Strided>(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
out_ptr,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
0);
|
||||
return;
|
||||
case 3:
|
||||
binary_op_dims<T, U, Op, 3, Strided>(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
out_ptr,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
0);
|
||||
return;
|
||||
}
|
||||
|
||||
ContiguousIterator a_it(shape, a_strides, dim - 3);
|
||||
ContiguousIterator b_it(shape, b_strides, dim - 3);
|
||||
auto stride = out_strides[dim - 4];
|
||||
for (int64_t elem = 0; elem < a.size(); elem += stride) {
|
||||
binary_op_dims<T, U, Op, 3, Strided>(
|
||||
a_ptr + a_it.loc,
|
||||
b_ptr + b_it.loc,
|
||||
out_ptr + elem,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
dim - 3);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
void binary_op(const array& a, const array& b, array& out, Op op) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
// The full computation is scalar scalar so call the base op once
|
||||
if (bopt == BinaryOpType::ScalarScalar) {
|
||||
*(out.data<U>()) = op(*a.data<T>(), *b.data<T>());
|
||||
return;
|
||||
}
|
||||
|
||||
// The full computation is scalar vector so delegate to the op
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
ScalarVector{op}(a.data<T>(), b.data<T>(), out.data<U>(), b.data_size());
|
||||
return;
|
||||
}
|
||||
|
||||
// The full computation is vector scalar so delegate to the op
|
||||
if (bopt == BinaryOpType::VectorScalar) {
|
||||
VectorScalar{op}(a.data<T>(), b.data<T>(), out.data<U>(), a.data_size());
|
||||
return;
|
||||
}
|
||||
|
||||
// The full computation is vector vector so delegate to the op
|
||||
if (bopt == BinaryOpType::VectorVector) {
|
||||
VectorVector{op}(a.data<T>(), b.data<T>(), out.data<U>(), out.size());
|
||||
return;
|
||||
}
|
||||
|
||||
// General computation so let's try to optimize
|
||||
auto [new_shape, new_strides] = collapse_contiguous_dims(
|
||||
a.shape(), {a.strides(), b.strides(), out.strides()});
|
||||
const auto& a_strides = new_strides[0];
|
||||
const auto& b_strides = new_strides[1];
|
||||
const auto& strides = new_strides[2];
|
||||
|
||||
// Get the left-most dim such that the array is row contiguous after
|
||||
auto leftmost_rc_dim = [&strides](const auto& arr_strides) {
|
||||
int d = arr_strides.size() - 1;
|
||||
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
|
||||
}
|
||||
return d + 1;
|
||||
};
|
||||
auto a_rc_dim = leftmost_rc_dim(a_strides);
|
||||
auto b_rc_dim = leftmost_rc_dim(b_strides);
|
||||
|
||||
// Get the left-most dim such that the array is a broadcasted "scalar" after
|
||||
auto leftmost_s_dim = [](const auto& arr_strides) {
|
||||
int d = arr_strides.size() - 1;
|
||||
for (; d >= 0 && arr_strides[d] == 0; d--) {
|
||||
}
|
||||
return d + 1;
|
||||
};
|
||||
auto a_s_dim = leftmost_s_dim(a_strides);
|
||||
auto b_s_dim = leftmost_s_dim(b_strides);
|
||||
|
||||
auto ndim = new_shape.size();
|
||||
|
||||
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
|
||||
int dim = ndim;
|
||||
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
|
||||
bopt = BinaryOpType::VectorVector;
|
||||
dim = d;
|
||||
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
|
||||
// contiguous
|
||||
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
|
||||
bopt = BinaryOpType::VectorScalar;
|
||||
dim = d;
|
||||
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
|
||||
// contiguous
|
||||
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
|
||||
bopt = BinaryOpType::ScalarVector;
|
||||
dim = d;
|
||||
}
|
||||
|
||||
// Can be sure dim > 0 since otherwise we would have used one of the fully
|
||||
// contiguous methods above. Except for the case that the flags do not
|
||||
// correspond to the underlying contiguity.
|
||||
if (dim == 0 || strides[dim - 1] < 16) {
|
||||
bopt = BinaryOpType::General;
|
||||
dim = ndim;
|
||||
}
|
||||
|
||||
switch (bopt) {
|
||||
case BinaryOpType::VectorVector:
|
||||
binary_op_dispatch_dims<T, U, true>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
VectorVector{op},
|
||||
dim,
|
||||
new_shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
strides);
|
||||
break;
|
||||
case BinaryOpType::VectorScalar:
|
||||
binary_op_dispatch_dims<T, U, true>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
VectorScalar{op},
|
||||
dim,
|
||||
new_shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
strides);
|
||||
break;
|
||||
case BinaryOpType::ScalarVector:
|
||||
binary_op_dispatch_dims<T, U, true>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
ScalarVector{op},
|
||||
dim,
|
||||
new_shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
strides);
|
||||
break;
|
||||
default:
|
||||
binary_op_dispatch_dims<T, U, false>(
|
||||
a, b, out, op, dim, new_shape, a_strides, b_strides, strides);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename Op>
|
||||
void binary_op(const array& a, const array& b, array& out, Op op) {
|
||||
binary_op<T, T>(a, b, out, op);
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary(const array& a, const array& b, array& out, Op op) {
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
binary_op<bool>(a, b, out, op);
|
||||
break;
|
||||
case uint8:
|
||||
binary_op<uint8_t>(a, b, out, op);
|
||||
break;
|
||||
case uint16:
|
||||
binary_op<uint16_t>(a, b, out, op);
|
||||
break;
|
||||
case uint32:
|
||||
binary_op<uint32_t>(a, b, out, op);
|
||||
break;
|
||||
case uint64:
|
||||
binary_op<uint64_t>(a, b, out, op);
|
||||
break;
|
||||
case int8:
|
||||
binary_op<int8_t>(a, b, out, op);
|
||||
break;
|
||||
case int16:
|
||||
binary_op<int16_t>(a, b, out, op);
|
||||
break;
|
||||
case int32:
|
||||
binary_op<int32_t>(a, b, out, op);
|
||||
break;
|
||||
case int64:
|
||||
binary_op<int64_t>(a, b, out, op);
|
||||
break;
|
||||
case float16:
|
||||
binary_op<float16_t>(a, b, out, op);
|
||||
break;
|
||||
case float32:
|
||||
binary_op<float>(a, b, out, op);
|
||||
break;
|
||||
case bfloat16:
|
||||
binary_op<bfloat16_t>(a, b, out, op);
|
||||
break;
|
||||
case complex64:
|
||||
binary_op<complex64_t>(a, b, out, op);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
Reference in New Issue
Block a user