Refactor common into cpu specific and truly common (#1817)

* refactor

* fix extension example

* fix no-cpu
This commit is contained in:
Awni Hannun 2025-02-03 15:58:02 -08:00 committed by GitHub
parent ec7c7def40
commit 1156c84e86
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
72 changed files with 1426 additions and 1434 deletions

View File

@ -6,6 +6,7 @@
#include "mlx/backend/common/copy.h" #include "mlx/backend/common/copy.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/utils.h" #include "mlx/utils.h"
#include "axpby/axpby.h" #include "axpby/axpby.h"

View File

@ -29,8 +29,10 @@ if(WIN32)
set_target_properties(mlx PROPERTIES WINDOWS_EXPORT_ALL_SYMBOLS TRUE) set_target_properties(mlx PROPERTIES WINDOWS_EXPORT_ALL_SYMBOLS TRUE)
endif() endif()
if(MLX_BUILD_CPU)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common) add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
if(MLX_BUILD_CPU)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/cpu)
else() else()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_cpu) add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_cpu)
endif() endif()

View File

@ -1,88 +1,8 @@
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set(COMPILER ${CMAKE_C_COMPILER})
set(CLANG TRUE)
else()
set(COMPILER ${CMAKE_CXX_COMPILER})
endif()
set(COMPILE_DEPS
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
simd/simd.h
simd/base_simd.h
simd/math.h
simd/type.h
unary_ops.h
binary_ops.h)
if(MSVC)
set(SHELL_EXT ps1)
set(SHELL_CMD powershell -ExecutionPolicy Bypass -File)
else()
set(SHELL_EXT sh)
set(SHELL_CMD bash)
endif()
add_custom_command(
OUTPUT compiled_preamble.cpp
COMMAND
${SHELL_CMD} ${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.${SHELL_EXT}
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp ${COMPILER}
${PROJECT_SOURCE_DIR} ${CLANG} ${CMAKE_SYSTEM_PROCESSOR}
DEPENDS make_compiled_preamble.${SHELL_EXT} compiled_preamble.h
${COMPILE_DEPS})
add_custom_target(cpu_compiled_preamble DEPENDS compiled_preamble.cpp)
add_dependencies(mlx cpu_compiled_preamble)
target_sources( target_sources(
mlx mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/common.cpp ${CMAKE_CURRENT_SOURCE_DIR}/common.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eigh.cpp
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cblas.cpp
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp ${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp ${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp ${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp ${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp)
${CMAKE_CURRENT_SOURCE_DIR}/cholesky.cpp
${CMAKE_CURRENT_SOURCE_DIR}/unary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp)
if(MLX_BUILD_ACCELERATE)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/bnns.cpp)
else()
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/no_fp16.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/no_bf16.cpp)
endif()
if(IOS)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_nocpu.cpp)
else()
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_cpu.cpp
${CMAKE_CURRENT_SOURCE_DIR}/jit_compiler.cpp)
endif()

View File

@ -1,18 +1,13 @@
// Copyright © 2023 Apple Inc. // Copyright © 2023 Apple Inc.
#pragma once #pragma once
#include <cassert>
#include "mlx/allocator.h" #include "mlx/allocator.h"
#include "mlx/array.h" #include "mlx/array.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/common/simd/simd.h"
namespace mlx::core { namespace mlx::core {
namespace {
enum class BinaryOpType { enum class BinaryOpType {
ScalarScalar, ScalarScalar,
ScalarVector, ScalarVector,
@ -21,7 +16,7 @@ enum class BinaryOpType {
General, General,
}; };
BinaryOpType get_binary_op_type(const array& a, const array& b) { inline BinaryOpType get_binary_op_type(const array& a, const array& b) {
BinaryOpType bopt; BinaryOpType bopt;
if (a.data_size() == 1 && b.data_size() == 1) { if (a.data_size() == 1 && b.data_size() == 1) {
bopt = BinaryOpType::ScalarScalar; bopt = BinaryOpType::ScalarScalar;
@ -39,7 +34,7 @@ BinaryOpType get_binary_op_type(const array& a, const array& b) {
return bopt; return bopt;
} }
void set_binary_op_output_data( inline void set_binary_op_output_data(
const array& a, const array& a,
const array& b, const array& b,
array& out, array& out,
@ -124,361 +119,4 @@ void set_binary_op_output_data(
} }
} }
template <typename Op>
struct VectorScalar {
Op op;
VectorScalar(Op op_) : op(op_) {}
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst, int size) {
T scalar = *b;
constexpr int N = simd::max_size<T>;
while (size >= N) {
simd::store(dst, op(simd::load<T, N>(a), simd::Simd<T, N>(scalar)));
dst += N;
a += N;
size -= N;
}
while (size-- > 0) {
*dst = op(*a, scalar);
dst++;
a++;
}
}
};
template <typename Op>
struct ScalarVector {
Op op;
ScalarVector(Op op_) : op(op_) {}
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst, int size) {
T scalar = *a;
constexpr int N = simd::max_size<T>;
while (size >= N) {
simd::store(dst, op(simd::Simd<T, N>(scalar), simd::load<T, N>(b)));
dst += N;
b += N;
size -= N;
}
while (size-- > 0) {
*dst = op(scalar, *b);
dst++;
b++;
}
}
};
template <typename Op>
struct VectorVector {
Op op;
VectorVector(Op op_) : op(op_) {}
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst, int size) {
constexpr int N = simd::max_size<T>;
while (size >= N) {
simd::store(dst, op(simd::load<T, N>(a), simd::load<T, N>(b)));
dst += N;
a += N;
b += N;
size -= N;
}
while (size-- > 0) {
*dst = op(*a, *b);
dst++;
a++;
b++;
}
}
};
template <typename T, typename U, typename Op, int D, bool Strided>
void binary_op_dims(
const T* a,
const T* b,
U* out,
Op op,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
auto stride_out = out_strides[axis];
auto N = shape[axis];
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
binary_op_dims<T, U, Op, D - 1, Strided>(
a, b, out, op, shape, a_strides, b_strides, out_strides, axis + 1);
} else {
if constexpr (Strided) {
op(a, b, out, stride_out);
} else {
*out = op(*a, *b);
}
}
out += stride_out;
a += stride_a;
b += stride_b;
}
}
template <typename T, typename U, bool Strided, typename Op>
void binary_op_dispatch_dims(
const array& a,
const array& b,
array& out,
Op op,
int dim,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& out_strides) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* out_ptr = out.data<U>();
switch (dim) {
case 1:
binary_op_dims<T, U, Op, 1, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
case 2:
binary_op_dims<T, U, Op, 2, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
case 3:
binary_op_dims<T, U, Op, 3, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
}
ContiguousIterator a_it(shape, a_strides, dim - 3);
ContiguousIterator b_it(shape, b_strides, dim - 3);
auto stride = out_strides[dim - 4];
for (int64_t elem = 0; elem < a.size(); elem += stride) {
binary_op_dims<T, U, Op, 3, Strided>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
out_ptr + elem,
op,
shape,
a_strides,
b_strides,
out_strides,
dim - 3);
a_it.step();
b_it.step();
}
}
template <typename T, typename U, typename Op>
void binary_op(const array& a, const array& b, array& out, Op op) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
// The full computation is scalar scalar so call the base op once
if (bopt == BinaryOpType::ScalarScalar) {
*(out.data<U>()) = op(*a.data<T>(), *b.data<T>());
return;
}
// The full computation is scalar vector so delegate to the op
if (bopt == BinaryOpType::ScalarVector) {
ScalarVector{op}(a.data<T>(), b.data<T>(), out.data<U>(), b.data_size());
return;
}
// The full computation is vector scalar so delegate to the op
if (bopt == BinaryOpType::VectorScalar) {
VectorScalar{op}(a.data<T>(), b.data<T>(), out.data<U>(), a.data_size());
return;
}
// The full computation is vector vector so delegate to the op
if (bopt == BinaryOpType::VectorVector) {
VectorVector{op}(a.data<T>(), b.data<T>(), out.data<U>(), out.size());
return;
}
// General computation so let's try to optimize
auto [new_shape, new_strides] = collapse_contiguous_dims(
a.shape(), {a.strides(), b.strides(), out.strides()});
const auto& a_strides = new_strides[0];
const auto& b_strides = new_strides[1];
const auto& strides = new_strides[2];
// Get the left-most dim such that the array is row contiguous after
auto leftmost_rc_dim = [&strides](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
}
return d + 1;
};
auto a_rc_dim = leftmost_rc_dim(a_strides);
auto b_rc_dim = leftmost_rc_dim(b_strides);
// Get the left-most dim such that the array is a broadcasted "scalar" after
auto leftmost_s_dim = [](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == 0; d--) {
}
return d + 1;
};
auto a_s_dim = leftmost_s_dim(a_strides);
auto b_s_dim = leftmost_s_dim(b_strides);
auto ndim = new_shape.size();
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
int dim = ndim;
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::VectorVector;
dim = d;
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
bopt = BinaryOpType::VectorScalar;
dim = d;
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::ScalarVector;
dim = d;
}
// Can be sure dim > 0 since otherwise we would have used one of the fully
// contiguous methods above. Except for the case that the flags do not
// correspond to the underlying contiguity.
if (dim == 0 || strides[dim - 1] < 16) {
bopt = BinaryOpType::General;
dim = ndim;
}
switch (bopt) {
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U, true>(
a,
b,
out,
VectorVector{op},
dim,
new_shape,
a_strides,
b_strides,
strides);
break;
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U, true>(
a,
b,
out,
VectorScalar{op},
dim,
new_shape,
a_strides,
b_strides,
strides);
break;
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U, true>(
a,
b,
out,
ScalarVector{op},
dim,
new_shape,
a_strides,
b_strides,
strides);
break;
default:
binary_op_dispatch_dims<T, U, false>(
a, b, out, op, dim, new_shape, a_strides, b_strides, strides);
break;
}
}
template <typename T, typename Op>
void binary_op(const array& a, const array& b, array& out, Op op) {
binary_op<T, T>(a, b, out, op);
}
template <typename Op>
void binary(const array& a, const array& b, array& out, Op op) {
switch (out.dtype()) {
case bool_:
binary_op<bool>(a, b, out, op);
break;
case uint8:
binary_op<uint8_t>(a, b, out, op);
break;
case uint16:
binary_op<uint16_t>(a, b, out, op);
break;
case uint32:
binary_op<uint32_t>(a, b, out, op);
break;
case uint64:
binary_op<uint64_t>(a, b, out, op);
break;
case int8:
binary_op<int8_t>(a, b, out, op);
break;
case int16:
binary_op<int16_t>(a, b, out, op);
break;
case int32:
binary_op<int32_t>(a, b, out, op);
break;
case int64:
binary_op<int64_t>(a, b, out, op);
break;
case float16:
binary_op<float16_t>(a, b, out, op);
break;
case float32:
binary_op<float>(a, b, out, op);
break;
case bfloat16:
binary_op<bfloat16_t>(a, b, out, op);
break;
case complex64:
binary_op<complex64_t>(a, b, out, op);
break;
}
}
} // namespace
} // namespace mlx::core } // namespace mlx::core

View File

@ -3,7 +3,6 @@
#pragma once #pragma once
#include "mlx/array.h" #include "mlx/array.h"
#include "mlx/backend/common/utils.h"
namespace mlx::core { namespace mlx::core {
@ -23,17 +22,4 @@ enum class CopyType {
GeneralGeneral GeneralGeneral
}; };
void copy(const array& src, array& dst, CopyType ctype);
void copy_inplace(const array& src, array& dst, CopyType ctype);
void copy_inplace(
const array& src,
array& dst,
const Shape& data_shape,
const Strides& i_strides,
const Strides& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype);
} // namespace mlx::core } // namespace mlx::core

View File

@ -1,40 +0,0 @@
// Copyright © 2023 Apple Inc.
#include <cmath>
namespace mlx::core {
/* Approximation to the inverse error function.
* Based on code from:
* https://stackoverflow.com/questions/27229371/inverse-error-function-in-c#answer-49743348
*/
float erfinv(float a) {
auto t = std::fma(a, 0.0f - a, 1.0f);
t = std::log(t);
float p;
if (std::abs(t) > 6.125f) { // maximum ulp error = 2.35793
p = 3.03697567e-10f; // 0x1.4deb44p-32
p = std::fma(p, t, 2.93243101e-8f); // 0x1.f7c9aep-26
p = std::fma(p, t, 1.22150334e-6f); // 0x1.47e512p-20
p = std::fma(p, t, 2.84108955e-5f); // 0x1.dca7dep-16
p = std::fma(p, t, 3.93552968e-4f); // 0x1.9cab92p-12
p = std::fma(p, t, 3.02698812e-3f); // 0x1.8cc0dep-9
p = std::fma(p, t, 4.83185798e-3f); // 0x1.3ca920p-8
p = std::fma(p, t, -2.64646143e-1f); // -0x1.0eff66p-2
p = std::fma(p, t, 8.40016484e-1f); // 0x1.ae16a4p-1
} else { // maximum ulp error = 2.35002
p = 5.43877832e-9f; // 0x1.75c000p-28
p = std::fma(p, t, 1.43285448e-7f); // 0x1.33b402p-23
p = std::fma(p, t, 1.22774793e-6f); // 0x1.499232p-20
p = std::fma(p, t, 1.12963626e-7f); // 0x1.e52cd2p-24
p = std::fma(p, t, -5.61530760e-5f); // -0x1.d70bd0p-15
p = std::fma(p, t, -1.47697632e-4f); // -0x1.35be90p-13
p = std::fma(p, t, 2.31468678e-3f); // 0x1.2f6400p-9
p = std::fma(p, t, 1.15392581e-2f); // 0x1.7a1e50p-7
p = std::fma(p, t, -2.32015476e-1f); // -0x1.db2aeep-3
p = std::fma(p, t, 8.86226892e-1f); // 0x1.c5bf88p-1
}
return a * p;
}
} // namespace mlx::core

View File

@ -1,377 +1,147 @@
// Copyright © 2023 Apple Inc. // Copyright © 2024 Apple Inc.
#include <cassert>
#include <functional>
#include <limits>
#include "mlx/backend/common/reduce.h" #include "mlx/backend/common/reduce.h"
#include "mlx/backend/common/simd/simd.h"
#include "mlx/primitives.h"
namespace mlx::core { namespace mlx::core {
namespace { std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
template <typename U>
struct Limits {
static const U max;
static const U min;
};
#define instantiate_default_limit(type) \
template <> \
struct Limits<type> { \
static constexpr type max = std::numeric_limits<type>::max(); \
static constexpr type min = std::numeric_limits<type>::min(); \
};
instantiate_default_limit(uint8_t);
instantiate_default_limit(uint16_t);
instantiate_default_limit(uint32_t);
instantiate_default_limit(uint64_t);
instantiate_default_limit(int8_t);
instantiate_default_limit(int16_t);
instantiate_default_limit(int32_t);
instantiate_default_limit(int64_t);
#define instantiate_float_limit(type) \
template <> \
struct Limits<type> { \
static const type max; \
static const type min; \
};
instantiate_float_limit(float16_t);
instantiate_float_limit(bfloat16_t);
instantiate_float_limit(float);
instantiate_float_limit(complex64_t);
template <>
struct Limits<bool> {
static constexpr bool max = true;
static constexpr bool min = false;
};
const float Limits<float>::max = std::numeric_limits<float>::infinity();
const float Limits<float>::min = -std::numeric_limits<float>::infinity();
const bfloat16_t Limits<bfloat16_t>::max =
std::numeric_limits<float>::infinity();
const bfloat16_t Limits<bfloat16_t>::min =
-std::numeric_limits<float>::infinity();
const float16_t Limits<float16_t>::max = std::numeric_limits<float>::infinity();
const float16_t Limits<float16_t>::min =
-std::numeric_limits<float>::infinity();
const complex64_t Limits<complex64_t>::max =
std::numeric_limits<float>::infinity();
const complex64_t Limits<complex64_t>::min =
-std::numeric_limits<float>::infinity();
struct AndReduce {
template <typename T>
bool operator()(bool x, T y) {
return x & (y != 0);
}
bool operator()(bool x, bool y) {
return x & y;
}
template <int N, typename T>
simd::Simd<bool, N> operator()(simd::Simd<bool, N> y, simd::Simd<T, N> x) {
return x & (y != 0);
};
template <int N>
simd::Simd<bool, N> operator()(simd::Simd<bool, N> y, simd::Simd<bool, N> x) {
return x & y;
};
template <int N, typename T>
bool operator()(simd::Simd<T, N> x) {
return simd::all(x);
};
};
struct OrReduce {
template <typename T>
bool operator()(bool x, T y) {
return x | (y != 0);
}
bool operator()(bool x, bool y) {
return x | y;
}
template <int N, typename T>
simd::Simd<bool, N> operator()(simd::Simd<bool, N> y, simd::Simd<T, N> x) {
return x | (y != 0);
};
template <int N>
simd::Simd<bool, N> operator()(simd::Simd<bool, N> y, simd::Simd<bool, N> x) {
return x | y;
};
template <int N, typename T>
bool operator()(simd::Simd<T, N> x) {
return simd::any(x);
};
};
struct MaxReduce {
template <typename T>
T operator()(T y, T x) {
return (*this)(simd::Simd<T, 1>(x), simd::Simd<T, 1>(y)).value;
};
template <int N, typename T>
simd::Simd<T, N> operator()(simd::Simd<T, N> y, simd::Simd<T, N> x) {
return simd::maximum(x, y);
};
template <int N, typename T>
T operator()(simd::Simd<T, N> x) {
return simd::max(x);
};
};
struct MinReduce {
template <typename T>
T operator()(T y, T x) {
return (*this)(simd::Simd<T, 1>(x), simd::Simd<T, 1>(y)).value;
};
template <int N, typename T>
simd::Simd<T, N> operator()(simd::Simd<T, N> y, simd::Simd<T, N> x) {
return simd::minimum(x, y);
};
template <int N, typename T>
T operator()(simd::Simd<T, N> x) {
return simd::min(x);
};
};
struct SumReduce {
template <typename T, typename U>
U operator()(U y, T x) {
return x + y;
};
template <int N, typename T, typename U>
simd::Simd<U, N> operator()(simd::Simd<U, N> y, simd::Simd<T, N> x) {
return y + x;
};
template <int N, typename T>
T operator()(simd::Simd<T, N> x) {
return simd::sum(x);
};
};
struct ProdReduce {
template <typename T, typename U>
U operator()(U y, T x) {
return x * y;
};
template <int N, typename T, typename U>
simd::Simd<U, N> operator()(simd::Simd<U, N> y, simd::Simd<T, N> x) {
return x * y;
};
template <int N, typename T>
T operator()(simd::Simd<T, N> x) {
return simd::prod(x);
};
};
template <typename InT>
void reduce_dispatch_and_or(
const array& in,
array& out,
Reduce::ReduceType rtype,
const std::vector<int>& axes) { const std::vector<int>& axes) {
if (rtype == Reduce::And) { auto shape = x.shape();
reduction_op<InT, bool>(in, out, axes, true, AndReduce()); auto strides = x.strides();
for (int i = axes.size() - 1; i >= 0; i--) {
int a = axes[i];
shape.erase(shape.begin() + a);
strides.erase(strides.begin() + a);
}
return std::make_pair(shape, strides);
}
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
// The data is all there and we are reducing over everything
if (x.size() == x.data_size() && axes.size() == x.ndim() &&
x.flags().contiguous) {
return ContiguousAllReduce;
}
// Row contiguous input so the output is row contiguous
if (x.flags().row_contiguous) {
// Merge consecutive axes
Shape shape = {x.shape(axes[0])};
Strides strides = {x.strides()[axes[0]]};
for (int i = 1; i < axes.size(); i++) {
if (axes[i] - 1 == axes[i - 1] && x.shape(axes[i]) > 1) {
shape.back() *= x.shape(axes[i]);
strides.back() = x.strides()[axes[i]];
} else { } else {
reduction_op<InT, bool>(in, out, axes, false, OrReduce()); shape.push_back(x.shape(axes[i]));
strides.push_back(x.strides()[axes[i]]);
} }
} }
template <typename InT> // Remove singleton axes from the plan
void reduce_dispatch_sum_prod( for (int i = shape.size() - 1; i >= 0; i--) {
const array& in, if (shape[i] == 1) {
array& out, shape.erase(shape.begin() + i);
Reduce::ReduceType rtype, strides.erase(strides.begin() + i);
const std::vector<int>& axes) {
if (rtype == Reduce::Sum) {
if constexpr (std::is_integral_v<InT> && sizeof(InT) <= 4) {
reduction_op<InT, int32_t>(in, out, axes, 0, SumReduce());
} else {
reduction_op<InT, InT>(in, out, axes, 0, SumReduce());
}
} else {
if constexpr (std::is_integral_v<InT> && sizeof(InT) <= 4) {
reduction_op<InT, int32_t>(in, out, axes, 1, ProdReduce());
} else {
reduction_op<InT, InT>(in, out, axes, 1, ProdReduce());
}
}
}
template <typename InT>
void reduce_dispatch_min_max(
const array& in,
array& out,
Reduce::ReduceType rtype,
const std::vector<int>& axes) {
if (rtype == Reduce::Max) {
auto init = Limits<InT>::min;
reduction_op<InT, InT>(in, out, axes, init, MaxReduce());
} else {
auto init = Limits<InT>::max;
reduction_op<InT, InT>(in, out, axes, init, MinReduce());
} }
} }
} // namespace if (strides.back() == 1) {
return ReductionPlan(ContiguousReduce, shape, strides);
void nd_loop( } else if (strides.back() > 1) {
std::function<void(int)> callback, return ReductionPlan(ContiguousStridedReduce, shape, strides);
const Shape& shape,
const Strides& strides) {
std::function<void(int, int)> loop_inner;
loop_inner = [&](int dim, int offset) {
if (dim < shape.size() - 1) {
auto size = shape[dim];
auto stride = strides[dim];
for (int i = 0; i < size; i++) {
loop_inner(dim + 1, offset + i * stride);
} }
} else {
auto size = shape[dim];
auto stride = strides[dim];
for (int i = 0; i < size; i++) {
callback(offset + i * stride);
}
}
};
loop_inner(0, 0);
} }
void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) { // Let's check if we can optimize our access patterns
assert(inputs.size() == 1); //
auto& in = inputs[0]; // 1. We have a reduction axis with stride 1. Simply call
switch (reduce_type_) { // GeneralContiguousReduce and be done with it.
case Reduce::And: // 2. We have transpositions and we are not reducing over the axis with
case Reduce::Or: { // stride 1. However, we are reducing over an axis where everything is
switch (in.dtype()) { // contiguous in memory to the right of that axis. We can call strided
case bool_: // reduce and be done with it.
case uint8: // 2. We have weird transpositions and expands. Copy the strides to the
case int8: // output, then call strided reduce.
reduce_dispatch_and_or<int8_t>(in, out, reduce_type_, axes_);
break; // Sort reduction axes by stride in order to merge them and figure out if we
case int16: // have a contiguous reduction.
case uint16: std::vector<std::pair<int, int64_t>> reductions;
case float16: for (auto a : axes) {
case bfloat16: if (x.shape(a) > 1) {
reduce_dispatch_and_or<int16_t>(in, out, reduce_type_, axes_); reductions.push_back(std::make_pair(x.shape(a), x.strides()[a]));
break;
case uint32:
case int32:
case float32:
reduce_dispatch_and_or<int32_t>(in, out, reduce_type_, axes_);
break;
case uint64:
case int64:
case complex64:
reduce_dispatch_and_or<int64_t>(in, out, reduce_type_, axes_);
break;
}
break;
}
case Reduce::Sum:
case Reduce::Prod: {
switch (in.dtype()) {
case bool_:
case uint8:
case int8:
reduce_dispatch_sum_prod<int8_t>(in, out, reduce_type_, axes_);
break;
case int16:
case uint16:
reduce_dispatch_sum_prod<int16_t>(in, out, reduce_type_, axes_);
break;
case int32:
case uint32:
reduce_dispatch_sum_prod<int32_t>(in, out, reduce_type_, axes_);
break;
case int64:
case uint64:
reduce_dispatch_sum_prod<int64_t>(in, out, reduce_type_, axes_);
break;
case float16:
reduce_dispatch_sum_prod<float16_t>(in, out, reduce_type_, axes_);
break;
case bfloat16:
reduce_dispatch_sum_prod<bfloat16_t>(in, out, reduce_type_, axes_);
break;
case float32:
reduce_dispatch_sum_prod<float>(in, out, reduce_type_, axes_);
break;
case complex64:
reduce_dispatch_sum_prod<complex64_t>(in, out, reduce_type_, axes_);
break;
}
break;
}
case Reduce::Max:
case Reduce::Min: {
switch (in.dtype()) {
case bool_:
reduce_dispatch_min_max<bool>(in, out, reduce_type_, axes_);
break;
case uint8:
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
break;
case uint16:
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
break;
case uint32:
reduce_dispatch_min_max<uint32_t>(in, out, reduce_type_, axes_);
break;
case uint64:
reduce_dispatch_min_max<uint64_t>(in, out, reduce_type_, axes_);
break;
case int8:
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
break;
case int16:
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
break;
case int32:
reduce_dispatch_min_max<int32_t>(in, out, reduce_type_, axes_);
break;
case int64:
reduce_dispatch_min_max<int64_t>(in, out, reduce_type_, axes_);
break;
case float16:
reduce_dispatch_min_max<float16_t>(in, out, reduce_type_, axes_);
break;
case float32:
reduce_dispatch_min_max<float>(in, out, reduce_type_, axes_);
break;
case bfloat16:
reduce_dispatch_min_max<bfloat16_t>(in, out, reduce_type_, axes_);
break;
case complex64:
reduce_dispatch_min_max<complex64_t>(in, out, reduce_type_, axes_);
break;
}
break;
} }
} }
std::sort(reductions.begin(), reductions.end(), [](auto a, auto b) {
bool a_is_zero = a.second == 0;
bool b_is_zero = b.second == 0;
return (a_is_zero != b_is_zero) ? a.second < b.second : a.second > b.second;
});
// Extract the two smallest and try to merge them in case the contiguous
// reduction can be bigger than just the last axis.
for (int i = reductions.size() - 1; i >= 1; i--) {
auto a = reductions[i];
auto b = reductions[i - 1];
// b.stride = a.shape * a.stride then a and b are contiguous
if (b.second == a.first * a.second) {
reductions.erase(reductions.begin() + i);
reductions[i - 1] = std::make_pair(a.first * b.first, a.second);
}
}
Shape shape;
Strides strides;
for (auto r : reductions) {
shape.push_back(r.first);
strides.push_back(r.second);
}
// We can call the contiguous reduction op for every weird way the input is
// structured in the rest of the axes.
if (strides.back() == 1) {
return ReductionPlan(GeneralContiguousReduce, shape, strides);
}
// Delegate to the general strided reduction op if the axes after
// strides.back() are contiguous.
if (strides.back() > 1) {
int64_t size = 1;
bool have_expand = false;
for (int i = x.ndim() - 1; i >= 0; i--) {
if (axes.back() == i) {
continue;
}
auto stride_i = x.strides()[i];
auto shape_i = x.shape(i);
if (stride_i == 0) {
if (shape_i == 1) {
continue;
}
have_expand = true;
break;
}
if (stride_i != size && shape_i != 1) {
break;
}
size *= shape_i;
}
// In the case of an expanded dimension we are being conservative and
// require the smallest reduction stride to be smaller than the maximum row
// contiguous size. The reason is that we can't easily know if the reduced
// axis is before or after an expanded dimension.
if (size > strides.back() || (size == strides.back() && !have_expand)) {
return ReductionPlan(GeneralStridedReduce, shape, strides);
}
}
return ReductionPlan(GeneralReduce, shape, strides);
} }
} // namespace mlx::core } // namespace mlx::core

View File

@ -2,7 +2,6 @@
#pragma once #pragma once
#include "mlx/backend/common/simd/simd.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
namespace mlx::core { namespace mlx::core {
@ -49,193 +48,8 @@ struct ReductionPlan {
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes); ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes);
// Helper for the ndimensional strided loop
// Should this be in utils?
void nd_loop(
std::function<void(int)> callback,
const Shape& shape,
const Strides& strides);
std::pair<Shape, Strides> shapes_without_reduction_axes( std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x, const array& x,
const std::vector<int>& axes); const std::vector<int>& axes);
template <typename T, typename U, typename Op>
void strided_reduce(
const T* x,
U* accumulator,
int size,
size_t stride,
Op op) {
constexpr int N = std::min(simd::max_size<T>, simd::max_size<U>);
for (int i = 0; i < size; i++) {
U* moving_accumulator = accumulator;
auto s = stride;
while (s >= N) {
auto acc = simd::load<U, N>(moving_accumulator);
auto v = simd::Simd<U, N>(simd::load<T, N>(x));
simd::store<U, N>(moving_accumulator, op(acc, v));
moving_accumulator += N;
x += N;
s -= N;
}
while (s-- > 0) {
*moving_accumulator = op(*moving_accumulator, *x);
moving_accumulator++;
x++;
}
}
};
template <typename T, typename U, typename Op>
void contiguous_reduce(const T* x, U* accumulator, int size, Op op, U init) {
constexpr int N = std::min(simd::max_size<T>, simd::max_size<U>);
simd::Simd<U, N> accumulator_v(init);
while (size >= N) {
accumulator_v = op(accumulator_v, simd::Simd<U, N>(simd::load<T, N>(x)));
x += N;
size -= N;
}
*accumulator = op(*accumulator, op(accumulator_v));
while (size-- > 0) {
*accumulator = op(*accumulator, *x);
x++;
}
}
template <typename T, typename U, typename Op>
void reduction_op(
const array& x,
array& out,
const std::vector<int>& axes,
U init,
Op op) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
ReductionPlan plan = get_reduction_plan(x, axes);
if (plan.type == ContiguousAllReduce) {
U* out_ptr = out.data<U>();
*out_ptr = init;
contiguous_reduce(x.data<T>(), out_ptr, x.size(), op, init);
return;
}
if (plan.type == ContiguousReduce && plan.shape.size() == 1) {
int reduction_size = plan.shape[0];
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
for (int i = 0; i < out.size(); i++, out_ptr++, x_ptr += reduction_size) {
*out_ptr = init;
contiguous_reduce(x_ptr, out_ptr, reduction_size, op, init);
}
return;
}
if (plan.type == GeneralContiguousReduce || plan.type == ContiguousReduce) {
int reduction_size = plan.shape.back();
plan.shape.pop_back();
plan.strides.pop_back();
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
// Unrolling the following loop (and implementing it in order for
// ContiguousReduce) should hold extra performance boost.
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
if (plan.shape.size() == 0) {
for (int i = 0; i < out.size(); i++, out_ptr++) {
int offset = elem_to_loc(i, shape, strides);
*out_ptr = init;
contiguous_reduce(x_ptr + offset, out_ptr, reduction_size, op, init);
}
} else {
for (int i = 0; i < out.size(); i++, out_ptr++) {
int offset = elem_to_loc(i, shape, strides);
*out_ptr = init;
nd_loop(
[&](int extra_offset) {
contiguous_reduce(
x_ptr + offset + extra_offset,
out_ptr,
reduction_size,
op,
init);
},
plan.shape,
plan.strides);
}
}
return;
}
if (plan.type == ContiguousStridedReduce && plan.shape.size() == 1) {
int reduction_size = plan.shape.back();
size_t reduction_stride = plan.strides.back();
plan.shape.pop_back();
plan.strides.pop_back();
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
for (int i = 0; i < out.size(); i += reduction_stride) {
std::fill_n(out_ptr, reduction_stride, init);
strided_reduce(x_ptr, out_ptr, reduction_size, reduction_stride, op);
x_ptr += reduction_stride * reduction_size;
out_ptr += reduction_stride;
}
return;
}
if (plan.type == GeneralStridedReduce ||
plan.type == ContiguousStridedReduce) {
int reduction_size = plan.shape.back();
size_t reduction_stride = plan.strides.back();
plan.shape.pop_back();
plan.strides.pop_back();
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
if (plan.shape.size() == 0) {
for (int i = 0; i < out.size(); i += reduction_stride) {
int offset = elem_to_loc(i, shape, strides);
std::fill_n(out_ptr, reduction_stride, init);
strided_reduce(
x_ptr + offset, out_ptr, reduction_size, reduction_stride, op);
out_ptr += reduction_stride;
}
} else {
for (int i = 0; i < out.size(); i += reduction_stride) {
int offset = elem_to_loc(i, shape, strides);
std::fill_n(out_ptr, reduction_stride, init);
nd_loop(
[&](int extra_offset) {
strided_reduce(
x_ptr + offset + extra_offset,
out_ptr,
reduction_size,
reduction_stride,
op);
},
plan.shape,
plan.strides);
out_ptr += reduction_stride;
}
}
return;
}
if (plan.type == GeneralReduce) {
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
for (int i = 0; i < out.size(); i++, out_ptr++) {
int offset = elem_to_loc(i, shape, strides);
U val = init;
nd_loop(
[&](int extra_offset) {
val = op(val, *(x_ptr + offset + extra_offset));
},
plan.shape,
plan.strides);
*out_ptr = val;
}
}
}
} // namespace mlx::core } // namespace mlx::core

View File

@ -1,147 +0,0 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/common/reduce.h"
namespace mlx::core {
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
const std::vector<int>& axes) {
auto shape = x.shape();
auto strides = x.strides();
for (int i = axes.size() - 1; i >= 0; i--) {
int a = axes[i];
shape.erase(shape.begin() + a);
strides.erase(strides.begin() + a);
}
return std::make_pair(shape, strides);
}
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
// The data is all there and we are reducing over everything
if (x.size() == x.data_size() && axes.size() == x.ndim() &&
x.flags().contiguous) {
return ContiguousAllReduce;
}
// Row contiguous input so the output is row contiguous
if (x.flags().row_contiguous) {
// Merge consecutive axes
Shape shape = {x.shape(axes[0])};
Strides strides = {x.strides()[axes[0]]};
for (int i = 1; i < axes.size(); i++) {
if (axes[i] - 1 == axes[i - 1] && x.shape(axes[i]) > 1) {
shape.back() *= x.shape(axes[i]);
strides.back() = x.strides()[axes[i]];
} else {
shape.push_back(x.shape(axes[i]));
strides.push_back(x.strides()[axes[i]]);
}
}
// Remove singleton axes from the plan
for (int i = shape.size() - 1; i >= 0; i--) {
if (shape[i] == 1) {
shape.erase(shape.begin() + i);
strides.erase(strides.begin() + i);
}
}
if (strides.back() == 1) {
return ReductionPlan(ContiguousReduce, shape, strides);
} else if (strides.back() > 1) {
return ReductionPlan(ContiguousStridedReduce, shape, strides);
}
}
// Let's check if we can optimize our access patterns
//
// 1. We have a reduction axis with stride 1. Simply call
// GeneralContiguousReduce and be done with it.
// 2. We have transpositions and we are not reducing over the axis with
// stride 1. However, we are reducing over an axis where everything is
// contiguous in memory to the right of that axis. We can call strided
// reduce and be done with it.
// 2. We have weird transpositions and expands. Copy the strides to the
// output, then call strided reduce.
// Sort reduction axes by stride in order to merge them and figure out if we
// have a contiguous reduction.
std::vector<std::pair<int, int64_t>> reductions;
for (auto a : axes) {
if (x.shape(a) > 1) {
reductions.push_back(std::make_pair(x.shape(a), x.strides()[a]));
}
}
std::sort(reductions.begin(), reductions.end(), [](auto a, auto b) {
bool a_is_zero = a.second == 0;
bool b_is_zero = b.second == 0;
return (a_is_zero != b_is_zero) ? a.second < b.second : a.second > b.second;
});
// Extract the two smallest and try to merge them in case the contiguous
// reduction can be bigger than just the last axis.
for (int i = reductions.size() - 1; i >= 1; i--) {
auto a = reductions[i];
auto b = reductions[i - 1];
// b.stride = a.shape * a.stride then a and b are contiguous
if (b.second == a.first * a.second) {
reductions.erase(reductions.begin() + i);
reductions[i - 1] = std::make_pair(a.first * b.first, a.second);
}
}
Shape shape;
Strides strides;
for (auto r : reductions) {
shape.push_back(r.first);
strides.push_back(r.second);
}
// We can call the contiguous reduction op for every weird way the input is
// structured in the rest of the axes.
if (strides.back() == 1) {
return ReductionPlan(GeneralContiguousReduce, shape, strides);
}
// Delegate to the general strided reduction op if the axes after
// strides.back() are contiguous.
if (strides.back() > 1) {
int64_t size = 1;
bool have_expand = false;
for (int i = x.ndim() - 1; i >= 0; i--) {
if (axes.back() == i) {
continue;
}
auto stride_i = x.strides()[i];
auto shape_i = x.shape(i);
if (stride_i == 0) {
if (shape_i == 1) {
continue;
}
have_expand = true;
break;
}
if (stride_i != size && shape_i != 1) {
break;
}
size *= shape_i;
}
// In the case of an expanded dimension we are being conservative and
// require the smallest reduction stride to be smaller than the maximum row
// contiguous size. The reason is that we can't easily know if the reduced
// axis is before or after an expanded dimension.
if (size > strides.back() || (size == strides.back() && !have_expand)) {
return ReductionPlan(GeneralStridedReduce, shape, strides);
}
}
return ReductionPlan(GeneralReduce, shape, strides);
}
} // namespace mlx::core

View File

@ -1,4 +0,0 @@
#pragma once
#include "mlx/backend/common/simd/math.h"
#include "mlx/backend/common/simd/type.h"

View File

@ -1,7 +0,0 @@
#pragma once
#include "mlx/backend/common/simd/base_simd.h"
#ifdef MLX_USE_ACCELERATE
#include "mlx/backend/common/simd/accelerate_simd.h"
#endif

View File

@ -7,8 +7,6 @@
namespace mlx::core { namespace mlx::core {
namespace {
// TODO: Add support for more combinations of input types. // TODO: Add support for more combinations of input types.
enum class TernaryOpType { enum class TernaryOpType {
ScalarScalarScalar, ScalarScalarScalar,
@ -16,7 +14,7 @@ enum class TernaryOpType {
General, General,
}; };
TernaryOpType inline TernaryOpType
get_ternary_op_type(const array& a, const array& b, const array& c) { get_ternary_op_type(const array& a, const array& b, const array& c) {
TernaryOpType topt; TernaryOpType topt;
if (a.data_size() == 1 && b.data_size() == 1 && c.data_size() == 1) { if (a.data_size() == 1 && b.data_size() == 1 && c.data_size() == 1) {
@ -33,7 +31,7 @@ get_ternary_op_type(const array& a, const array& b, const array& c) {
return topt; return topt;
} }
void set_ternary_op_output_data( inline void set_ternary_op_output_data(
const array& a, const array& a,
const array& b, const array& b,
const array& c, const array& c,
@ -76,152 +74,5 @@ void set_ternary_op_output_data(
break; break;
} }
} }
template <typename T1, typename T2, typename T3, typename U, typename Op, int D>
void ternary_op_dims(
const T1* a,
const T2* b,
const T3* c,
U* out,
Op op,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& c_strides,
const Strides& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
auto stride_c = c_strides[axis];
auto stride_out = out_strides[axis];
auto N = shape[axis];
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
ternary_op_dims<T1, T2, T3, U, Op, D - 1>(
a,
b,
c,
out,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
axis + 1);
} else {
*out = op(*a, *b, *c);
}
a += stride_a;
b += stride_b;
c += stride_c;
out += stride_out;
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dispatch_dims(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
auto [shape, strides] = collapse_contiguous_dims(
a.shape(), {a.strides(), b.strides(), c.strides(), out.strides()});
const auto& a_strides = strides[0];
const auto& b_strides = strides[1];
const auto& c_strides = strides[2];
const auto& out_strides = strides[3];
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* out_ptr = out.data<T3>();
int ndim = shape.size();
switch (ndim) {
case 1:
ternary_op_dims<T1, T2, T3, U, Op, 1>(
a_ptr,
b_ptr,
c_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
0);
return;
case 2:
ternary_op_dims<T1, T2, T3, U, Op, 2>(
a_ptr,
b_ptr,
c_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
0);
return;
}
ContiguousIterator a_it(shape, a_strides, ndim - 2);
ContiguousIterator b_it(shape, b_strides, ndim - 2);
ContiguousIterator c_it(shape, c_strides, ndim - 2);
auto stride = out_strides[ndim - 3];
for (size_t elem = 0; elem < a.size(); elem += stride) {
ternary_op_dims<T1, T2, T3, U, Op, 2>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
c_ptr + c_it.loc,
out_ptr + elem,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
ndim - 2);
a_it.step();
b_it.step();
c_it.step();
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
TernaryOpType topt = get_ternary_op_type(a, b, c);
set_ternary_op_output_data(a, b, c, out, topt);
// The full computation is scalar-scalar-scalar so we call the base op once.
if (topt == TernaryOpType::ScalarScalarScalar) {
*(out.data<U>()) = op(*a.data<T1>(), *b.data<T2>(), *c.data<T3>());
} else if (topt == TernaryOpType::VectorVectorVector) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* out_ptr = out.data<U>();
for (size_t i = 0; i < out.size(); ++i) {
*out_ptr = op(*a_ptr, *b_ptr, *c_ptr);
a_ptr++;
b_ptr++;
c_ptr++;
out_ptr++;
}
} else {
ternary_op_dispatch_dims<T1, T2, T3, U>(a, b, c, out, op);
}
}
} // namespace
} // namespace mlx::core } // namespace mlx::core

View File

@ -0,0 +1,81 @@
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set(COMPILER ${CMAKE_C_COMPILER})
set(CLANG TRUE)
else()
set(COMPILER ${CMAKE_CXX_COMPILER})
endif()
set(COMPILE_DEPS
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
simd/simd.h
simd/base_simd.h
simd/math.h
simd/type.h
unary_ops.h
binary_ops.h)
if(MSVC)
set(SHELL_EXT ps1)
set(SHELL_CMD powershell -ExecutionPolicy Bypass -File)
else()
set(SHELL_EXT sh)
set(SHELL_CMD bash)
endif()
add_custom_command(
OUTPUT compiled_preamble.cpp
COMMAND
${SHELL_CMD} ${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.${SHELL_EXT}
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp ${COMPILER}
${PROJECT_SOURCE_DIR} ${CLANG} ${CMAKE_SYSTEM_PROCESSOR}
DEPENDS make_compiled_preamble.${SHELL_EXT} compiled_preamble.h
${COMPILE_DEPS})
add_custom_target(cpu_compiled_preamble DEPENDS compiled_preamble.cpp)
add_dependencies(mlx cpu_compiled_preamble)
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eigh.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cblas.cpp
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp
${CMAKE_CURRENT_SOURCE_DIR}/cholesky.cpp
${CMAKE_CURRENT_SOURCE_DIR}/unary.cpp
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp)
if(MLX_BUILD_ACCELERATE)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/bnns.cpp)
else()
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/no_fp16.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/no_bf16.cpp)
endif()
if(IOS)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../no_cpu/compiled.cpp)
else()
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/jit_compiler.cpp)
endif()

View File

@ -2,8 +2,8 @@
#include <cassert> #include <cassert>
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
#include "utils.h"
namespace mlx::core { namespace mlx::core {

View File

@ -5,9 +5,9 @@
#include <sstream> #include <sstream>
#include "mlx/allocator.h" #include "mlx/allocator.h"
#include "mlx/backend/common/binary.h" #include "mlx/backend/cpu/binary.h"
#include "mlx/backend/common/binary_ops.h" #include "mlx/backend/cpu/binary_ops.h"
#include "mlx/backend/common/binary_two.h" #include "mlx/backend/cpu/binary_two.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
#include "mlx/utils.h" #include "mlx/utils.h"

370
mlx/backend/cpu/binary.h Normal file
View File

@ -0,0 +1,370 @@
// Copyright © 2023 Apple Inc.
#pragma once
#include <cassert>
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/simd/simd.h"
namespace mlx::core {
template <typename Op>
struct VectorScalar {
Op op;
VectorScalar(Op op_) : op(op_) {}
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst, int size) {
T scalar = *b;
constexpr int N = simd::max_size<T>;
while (size >= N) {
simd::store(dst, op(simd::load<T, N>(a), simd::Simd<T, N>(scalar)));
dst += N;
a += N;
size -= N;
}
while (size-- > 0) {
*dst = op(*a, scalar);
dst++;
a++;
}
}
};
template <typename Op>
struct ScalarVector {
Op op;
ScalarVector(Op op_) : op(op_) {}
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst, int size) {
T scalar = *a;
constexpr int N = simd::max_size<T>;
while (size >= N) {
simd::store(dst, op(simd::Simd<T, N>(scalar), simd::load<T, N>(b)));
dst += N;
b += N;
size -= N;
}
while (size-- > 0) {
*dst = op(scalar, *b);
dst++;
b++;
}
}
};
template <typename Op>
struct VectorVector {
Op op;
VectorVector(Op op_) : op(op_) {}
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst, int size) {
constexpr int N = simd::max_size<T>;
while (size >= N) {
simd::store(dst, op(simd::load<T, N>(a), simd::load<T, N>(b)));
dst += N;
a += N;
b += N;
size -= N;
}
while (size-- > 0) {
*dst = op(*a, *b);
dst++;
a++;
b++;
}
}
};
template <typename T, typename U, typename Op, int D, bool Strided>
void binary_op_dims(
const T* a,
const T* b,
U* out,
Op op,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
auto stride_out = out_strides[axis];
auto N = shape[axis];
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
binary_op_dims<T, U, Op, D - 1, Strided>(
a, b, out, op, shape, a_strides, b_strides, out_strides, axis + 1);
} else {
if constexpr (Strided) {
op(a, b, out, stride_out);
} else {
*out = op(*a, *b);
}
}
out += stride_out;
a += stride_a;
b += stride_b;
}
}
template <typename T, typename U, bool Strided, typename Op>
void binary_op_dispatch_dims(
const array& a,
const array& b,
array& out,
Op op,
int dim,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& out_strides) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* out_ptr = out.data<U>();
switch (dim) {
case 1:
binary_op_dims<T, U, Op, 1, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
case 2:
binary_op_dims<T, U, Op, 2, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
case 3:
binary_op_dims<T, U, Op, 3, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
}
ContiguousIterator a_it(shape, a_strides, dim - 3);
ContiguousIterator b_it(shape, b_strides, dim - 3);
auto stride = out_strides[dim - 4];
for (int64_t elem = 0; elem < a.size(); elem += stride) {
binary_op_dims<T, U, Op, 3, Strided>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
out_ptr + elem,
op,
shape,
a_strides,
b_strides,
out_strides,
dim - 3);
a_it.step();
b_it.step();
}
}
template <typename T, typename U, typename Op>
void binary_op(const array& a, const array& b, array& out, Op op) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
// The full computation is scalar scalar so call the base op once
if (bopt == BinaryOpType::ScalarScalar) {
*(out.data<U>()) = op(*a.data<T>(), *b.data<T>());
return;
}
// The full computation is scalar vector so delegate to the op
if (bopt == BinaryOpType::ScalarVector) {
ScalarVector{op}(a.data<T>(), b.data<T>(), out.data<U>(), b.data_size());
return;
}
// The full computation is vector scalar so delegate to the op
if (bopt == BinaryOpType::VectorScalar) {
VectorScalar{op}(a.data<T>(), b.data<T>(), out.data<U>(), a.data_size());
return;
}
// The full computation is vector vector so delegate to the op
if (bopt == BinaryOpType::VectorVector) {
VectorVector{op}(a.data<T>(), b.data<T>(), out.data<U>(), out.size());
return;
}
// General computation so let's try to optimize
auto [new_shape, new_strides] = collapse_contiguous_dims(
a.shape(), {a.strides(), b.strides(), out.strides()});
const auto& a_strides = new_strides[0];
const auto& b_strides = new_strides[1];
const auto& strides = new_strides[2];
// Get the left-most dim such that the array is row contiguous after
auto leftmost_rc_dim = [&strides](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
}
return d + 1;
};
auto a_rc_dim = leftmost_rc_dim(a_strides);
auto b_rc_dim = leftmost_rc_dim(b_strides);
// Get the left-most dim such that the array is a broadcasted "scalar" after
auto leftmost_s_dim = [](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == 0; d--) {
}
return d + 1;
};
auto a_s_dim = leftmost_s_dim(a_strides);
auto b_s_dim = leftmost_s_dim(b_strides);
auto ndim = new_shape.size();
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
int dim = ndim;
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::VectorVector;
dim = d;
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
bopt = BinaryOpType::VectorScalar;
dim = d;
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::ScalarVector;
dim = d;
}
// Can be sure dim > 0 since otherwise we would have used one of the fully
// contiguous methods above. Except for the case that the flags do not
// correspond to the underlying contiguity.
if (dim == 0 || strides[dim - 1] < 16) {
bopt = BinaryOpType::General;
dim = ndim;
}
switch (bopt) {
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U, true>(
a,
b,
out,
VectorVector{op},
dim,
new_shape,
a_strides,
b_strides,
strides);
break;
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U, true>(
a,
b,
out,
VectorScalar{op},
dim,
new_shape,
a_strides,
b_strides,
strides);
break;
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U, true>(
a,
b,
out,
ScalarVector{op},
dim,
new_shape,
a_strides,
b_strides,
strides);
break;
default:
binary_op_dispatch_dims<T, U, false>(
a, b, out, op, dim, new_shape, a_strides, b_strides, strides);
break;
}
}
template <typename T, typename Op>
void binary_op(const array& a, const array& b, array& out, Op op) {
binary_op<T, T>(a, b, out, op);
}
template <typename Op>
void binary(const array& a, const array& b, array& out, Op op) {
switch (out.dtype()) {
case bool_:
binary_op<bool>(a, b, out, op);
break;
case uint8:
binary_op<uint8_t>(a, b, out, op);
break;
case uint16:
binary_op<uint16_t>(a, b, out, op);
break;
case uint32:
binary_op<uint32_t>(a, b, out, op);
break;
case uint64:
binary_op<uint64_t>(a, b, out, op);
break;
case int8:
binary_op<int8_t>(a, b, out, op);
break;
case int16:
binary_op<int16_t>(a, b, out, op);
break;
case int32:
binary_op<int32_t>(a, b, out, op);
break;
case int64:
binary_op<int64_t>(a, b, out, op);
break;
case float16:
binary_op<float16_t>(a, b, out, op);
break;
case float32:
binary_op<float>(a, b, out, op);
break;
case bfloat16:
binary_op<bfloat16_t>(a, b, out, op);
break;
case complex64:
binary_op<complex64_t>(a, b, out, op);
break;
}
}
} // namespace mlx::core

View File

@ -2,7 +2,7 @@
#pragma once #pragma once
#include "mlx/backend/common/simd/simd.h" #include "mlx/backend/cpu/simd/simd.h"
namespace mlx::core::detail { namespace mlx::core::detail {

View File

@ -2,8 +2,8 @@
#pragma once #pragma once
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/binary.h"
namespace mlx::core { namespace mlx::core {

View File

@ -1,8 +1,8 @@
// Copyright © 2023-2024 Apple Inc. // Copyright © 2023-2024 Apple Inc.
#include "mlx/allocator.h" #include "mlx/allocator.h"
#include "mlx/backend/common/copy.h" #include "mlx/backend/cpu/copy.h"
#include "mlx/backend/common/lapack.h" #include "mlx/backend/cpu/lapack.h"
#include "mlx/linalg.h" #include "mlx/linalg.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"

View File

@ -10,8 +10,8 @@
#include <fmt/format.h> #include <fmt/format.h>
#include "mlx/backend/common/compiled.h" #include "mlx/backend/common/compiled.h"
#include "mlx/backend/common/compiled_preamble.h" #include "mlx/backend/cpu/compiled_preamble.h"
#include "mlx/backend/common/jit_compiler.h" #include "mlx/backend/cpu/jit_compiler.h"
#include "mlx/device.h" #include "mlx/device.h"
#include "mlx/graph_utils.h" #include "mlx/graph_utils.h"

View File

@ -5,8 +5,8 @@
// clang-format off // clang-format off
#include "mlx/types/half_types.h" #include "mlx/types/half_types.h"
#include "mlx/types/complex.h" #include "mlx/types/complex.h"
#include "mlx/backend/common/unary_ops.h" #include "mlx/backend/cpu/unary_ops.h"
#include "mlx/backend/common/binary_ops.h" #include "mlx/backend/cpu/binary_ops.h"
// clang-format on // clang-format on
const char* get_kernel_preamble(); const char* get_kernel_preamble();

View File

@ -3,8 +3,8 @@
#include <cassert> #include <cassert>
#include <numeric> #include <numeric>
#include "mlx/backend/common/copy.h" #include "mlx/backend/cpu/copy.h"
#include "mlx/backend/common/lapack.h" #include "mlx/backend/cpu/lapack.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
#include "mlx/utils.h" #include "mlx/utils.h"

View File

@ -3,9 +3,9 @@
#include <numeric> #include <numeric>
#include "mlx/allocator.h" #include "mlx/allocator.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/simd/simd.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/simd/simd.h"
namespace mlx::core { namespace mlx::core {

24
mlx/backend/cpu/copy.h Normal file
View File

@ -0,0 +1,24 @@
// Copyright © 2023-2024 Apple Inc.
#pragma once
#include "mlx/array.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/utils.h"
namespace mlx::core {
void copy(const array& src, array& dst, CopyType ctype);
void copy_inplace(const array& src, array& dst, CopyType ctype);
void copy_inplace(
const array& src,
array& dst,
const Shape& data_shape,
const Strides& i_strides,
const Strides& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype);
} // namespace mlx::core

View File

@ -2,8 +2,8 @@
#include "mlx/allocator.h" #include "mlx/allocator.h"
#include "mlx/array.h" #include "mlx/array.h"
#include "mlx/backend/common/copy.h" #include "mlx/backend/cpu/copy.h"
#include "mlx/backend/common/lapack.h" #include "mlx/backend/cpu/lapack.h"
#include "mlx/linalg.h" #include "mlx/linalg.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"

View File

@ -3,8 +3,8 @@
#include <Accelerate/Accelerate.h> #include <Accelerate/Accelerate.h>
#include "mlx/array.h" #include "mlx/array.h"
#include "mlx/backend/common/gemm.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/gemm.h"
#include "mlx/dtype.h" #include "mlx/dtype.h"
namespace mlx::core { namespace mlx::core {

View File

@ -1,8 +1,8 @@
// Copyright © 2025 Apple Inc. // Copyright © 2025 Apple Inc.
#include "mlx/backend/common/gemm.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/gemm.h"
#include "mlx/backend/cpu/lapack.h"
namespace mlx::core { namespace mlx::core {

View File

@ -1,6 +1,6 @@
// Copyright © 2025 Apple Inc. // Copyright © 2025 Apple Inc.
#include "mlx/backend/common/gemm.h" #include "mlx/backend/cpu/gemm.h"
namespace mlx::core { namespace mlx::core {

View File

@ -1,6 +1,6 @@
// Copyright © 2025 Apple Inc. // Copyright © 2025 Apple Inc.
#include "mlx/backend/common/gemm.h" #include "mlx/backend/cpu/gemm.h"
namespace mlx::core { namespace mlx::core {

View File

@ -2,8 +2,8 @@
#include <cassert> #include <cassert>
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/hadamard.h" #include "mlx/backend/common/hadamard.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
namespace mlx::core { namespace mlx::core {

View File

@ -6,8 +6,8 @@
#include "mlx/allocator.h" #include "mlx/allocator.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
namespace mlx::core { namespace mlx::core {

View File

@ -1,8 +1,8 @@
// Copyright © 2023-2024 Apple Inc. // Copyright © 2023-2024 Apple Inc.
#include "mlx/allocator.h" #include "mlx/allocator.h"
#include "mlx/backend/common/copy.h" #include "mlx/backend/cpu/copy.h"
#include "mlx/backend/common/lapack.h" #include "mlx/backend/cpu/lapack.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
int strtri_wrapper(char uplo, char diag, float* matrix, int N) { int strtri_wrapper(char uplo, char diag, float* matrix, int N) {

View File

@ -1,6 +1,6 @@
// Copyright © 2024 Apple Inc. // Copyright © 2024 Apple Inc.
#include "mlx/backend/common/jit_compiler.h" #include "mlx/backend/cpu/jit_compiler.h"
#include <sstream> #include <sstream>
#include <vector> #include <vector>

View File

@ -8,7 +8,7 @@ $CL = $args[1]
$SRCDIR = $args[2] $SRCDIR = $args[2]
# Get command result as array. # Get command result as array.
$CONTENT = & $CL /std:c++17 /EP "/I$SRCDIR" /Tp "$SRCDIR/mlx/backend/common/compiled_preamble.h" $CONTENT = & $CL /std:c++17 /EP "/I$SRCDIR" /Tp "$SRCDIR/mlx/backend/cpu/compiled_preamble.h"
# Remove empty lines. # Remove empty lines.
# Otherwise there will be too much empty lines making the result unreadable. # Otherwise there will be too much empty lines making the result unreadable.
$CONTENT = $CONTENT | Where-Object { $_.Trim() -ne '' } $CONTENT = $CONTENT | Where-Object { $_.Trim() -ne '' }

View File

@ -24,7 +24,7 @@ else
CC_FLAGS="-std=c++17" CC_FLAGS="-std=c++17"
fi fi
CONTENT=$($GCC $CC_FLAGS -I "$SRCDIR" -E "$SRCDIR/mlx/backend/common/compiled_preamble.h" 2>/dev/null) CONTENT=$($GCC $CC_FLAGS -I "$SRCDIR" -E "$SRCDIR/mlx/backend/cpu/compiled_preamble.h" 2>/dev/null)
cat << EOF > "$OUTPUT_FILE" cat << EOF > "$OUTPUT_FILE"
const char* get_kernel_preamble() { const char* get_kernel_preamble() {

View File

@ -3,9 +3,9 @@
#include <cstring> #include <cstring>
#include "mlx/array.h" #include "mlx/array.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
namespace mlx::core { namespace mlx::core {

View File

@ -2,8 +2,8 @@
#include <cstring> #include <cstring>
#include "mlx/array.h" #include "mlx/array.h"
#include "mlx/backend/common/copy.h" #include "mlx/backend/cpu/copy.h"
#include "mlx/backend/common/gemm.h" #include "mlx/backend/cpu/gemm.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
namespace mlx::core { namespace mlx::core {

View File

@ -7,12 +7,12 @@
#include <sstream> #include <sstream>
#include "mlx/allocator.h" #include "mlx/allocator.h"
#include "mlx/backend/common/arange.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/load.h" #include "mlx/backend/common/load.h"
#include "mlx/backend/common/slicing.h" #include "mlx/backend/common/slicing.h"
#include "mlx/backend/common/threefry.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/arange.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/threefry.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
#include "mlx/utils.h" #include "mlx/utils.h"

View File

@ -1,8 +1,8 @@
// Copyright © 2023-2024 Apple Inc. // Copyright © 2023-2024 Apple Inc.
#include "mlx/allocator.h" #include "mlx/allocator.h"
#include "mlx/backend/common/copy.h" #include "mlx/backend/cpu/copy.h"
#include "mlx/backend/common/lapack.h" #include "mlx/backend/cpu/lapack.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
namespace mlx::core { namespace mlx::core {

View File

@ -2,8 +2,8 @@
#include <cassert> #include <cassert>
#include "mlx/backend/common/copy.h" #include "mlx/backend/cpu/copy.h"
#include "mlx/backend/common/simd/simd.h" #include "mlx/backend/cpu/simd/simd.h"
#include "mlx/fast_primitives.h" #include "mlx/fast_primitives.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
#include "mlx/utils.h" #include "mlx/utils.h"

552
mlx/backend/cpu/reduce.cpp Normal file
View File

@ -0,0 +1,552 @@
// Copyright © 2023 Apple Inc.
#include <cassert>
#include <functional>
#include <limits>
#include "mlx/backend/common/reduce.h"
#include "mlx/backend/cpu/simd/simd.h"
#include "mlx/primitives.h"
namespace mlx::core {
template <typename U>
struct Limits {
static const U max;
static const U min;
};
#define instantiate_default_limit(type) \
template <> \
struct Limits<type> { \
static constexpr type max = std::numeric_limits<type>::max(); \
static constexpr type min = std::numeric_limits<type>::min(); \
};
instantiate_default_limit(uint8_t);
instantiate_default_limit(uint16_t);
instantiate_default_limit(uint32_t);
instantiate_default_limit(uint64_t);
instantiate_default_limit(int8_t);
instantiate_default_limit(int16_t);
instantiate_default_limit(int32_t);
instantiate_default_limit(int64_t);
#define instantiate_float_limit(type) \
template <> \
struct Limits<type> { \
static const type max; \
static const type min; \
};
instantiate_float_limit(float16_t);
instantiate_float_limit(bfloat16_t);
instantiate_float_limit(float);
instantiate_float_limit(complex64_t);
template <>
struct Limits<bool> {
static constexpr bool max = true;
static constexpr bool min = false;
};
const float Limits<float>::max = std::numeric_limits<float>::infinity();
const float Limits<float>::min = -std::numeric_limits<float>::infinity();
const bfloat16_t Limits<bfloat16_t>::max =
std::numeric_limits<float>::infinity();
const bfloat16_t Limits<bfloat16_t>::min =
-std::numeric_limits<float>::infinity();
const float16_t Limits<float16_t>::max = std::numeric_limits<float>::infinity();
const float16_t Limits<float16_t>::min =
-std::numeric_limits<float>::infinity();
const complex64_t Limits<complex64_t>::max =
std::numeric_limits<float>::infinity();
const complex64_t Limits<complex64_t>::min =
-std::numeric_limits<float>::infinity();
template <typename T, typename U, typename Op>
void strided_reduce(
const T* x,
U* accumulator,
int size,
size_t stride,
Op op) {
constexpr int N = std::min(simd::max_size<T>, simd::max_size<U>);
for (int i = 0; i < size; i++) {
U* moving_accumulator = accumulator;
auto s = stride;
while (s >= N) {
auto acc = simd::load<U, N>(moving_accumulator);
auto v = simd::Simd<U, N>(simd::load<T, N>(x));
simd::store<U, N>(moving_accumulator, op(acc, v));
moving_accumulator += N;
x += N;
s -= N;
}
while (s-- > 0) {
*moving_accumulator = op(*moving_accumulator, *x);
moving_accumulator++;
x++;
}
}
};
template <typename T, typename U, typename Op>
void contiguous_reduce(const T* x, U* accumulator, int size, Op op, U init) {
constexpr int N = std::min(simd::max_size<T>, simd::max_size<U>);
simd::Simd<U, N> accumulator_v(init);
while (size >= N) {
accumulator_v = op(accumulator_v, simd::Simd<U, N>(simd::load<T, N>(x)));
x += N;
size -= N;
}
*accumulator = op(*accumulator, op(accumulator_v));
while (size-- > 0) {
*accumulator = op(*accumulator, *x);
x++;
}
}
// Helper for the ndimensional strided loop
void nd_loop(
std::function<void(int)> callback,
const Shape& shape,
const Strides& strides) {
std::function<void(int, int)> loop_inner;
loop_inner = [&](int dim, int offset) {
if (dim < shape.size() - 1) {
auto size = shape[dim];
auto stride = strides[dim];
for (int i = 0; i < size; i++) {
loop_inner(dim + 1, offset + i * stride);
}
} else {
auto size = shape[dim];
auto stride = strides[dim];
for (int i = 0; i < size; i++) {
callback(offset + i * stride);
}
}
};
loop_inner(0, 0);
}
template <typename T, typename U, typename Op>
void reduction_op(
const array& x,
array& out,
const std::vector<int>& axes,
U init,
Op op) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
ReductionPlan plan = get_reduction_plan(x, axes);
if (plan.type == ContiguousAllReduce) {
U* out_ptr = out.data<U>();
*out_ptr = init;
contiguous_reduce(x.data<T>(), out_ptr, x.size(), op, init);
return;
}
if (plan.type == ContiguousReduce && plan.shape.size() == 1) {
int reduction_size = plan.shape[0];
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
for (int i = 0; i < out.size(); i++, out_ptr++, x_ptr += reduction_size) {
*out_ptr = init;
contiguous_reduce(x_ptr, out_ptr, reduction_size, op, init);
}
return;
}
if (plan.type == GeneralContiguousReduce || plan.type == ContiguousReduce) {
int reduction_size = plan.shape.back();
plan.shape.pop_back();
plan.strides.pop_back();
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
// Unrolling the following loop (and implementing it in order for
// ContiguousReduce) should hold extra performance boost.
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
if (plan.shape.size() == 0) {
for (int i = 0; i < out.size(); i++, out_ptr++) {
int offset = elem_to_loc(i, shape, strides);
*out_ptr = init;
contiguous_reduce(x_ptr + offset, out_ptr, reduction_size, op, init);
}
} else {
for (int i = 0; i < out.size(); i++, out_ptr++) {
int offset = elem_to_loc(i, shape, strides);
*out_ptr = init;
nd_loop(
[&](int extra_offset) {
contiguous_reduce(
x_ptr + offset + extra_offset,
out_ptr,
reduction_size,
op,
init);
},
plan.shape,
plan.strides);
}
}
return;
}
if (plan.type == ContiguousStridedReduce && plan.shape.size() == 1) {
int reduction_size = plan.shape.back();
size_t reduction_stride = plan.strides.back();
plan.shape.pop_back();
plan.strides.pop_back();
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
for (int i = 0; i < out.size(); i += reduction_stride) {
std::fill_n(out_ptr, reduction_stride, init);
strided_reduce(x_ptr, out_ptr, reduction_size, reduction_stride, op);
x_ptr += reduction_stride * reduction_size;
out_ptr += reduction_stride;
}
return;
}
if (plan.type == GeneralStridedReduce ||
plan.type == ContiguousStridedReduce) {
int reduction_size = plan.shape.back();
size_t reduction_stride = plan.strides.back();
plan.shape.pop_back();
plan.strides.pop_back();
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
if (plan.shape.size() == 0) {
for (int i = 0; i < out.size(); i += reduction_stride) {
int offset = elem_to_loc(i, shape, strides);
std::fill_n(out_ptr, reduction_stride, init);
strided_reduce(
x_ptr + offset, out_ptr, reduction_size, reduction_stride, op);
out_ptr += reduction_stride;
}
} else {
for (int i = 0; i < out.size(); i += reduction_stride) {
int offset = elem_to_loc(i, shape, strides);
std::fill_n(out_ptr, reduction_stride, init);
nd_loop(
[&](int extra_offset) {
strided_reduce(
x_ptr + offset + extra_offset,
out_ptr,
reduction_size,
reduction_stride,
op);
},
plan.shape,
plan.strides);
out_ptr += reduction_stride;
}
}
return;
}
if (plan.type == GeneralReduce) {
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
for (int i = 0; i < out.size(); i++, out_ptr++) {
int offset = elem_to_loc(i, shape, strides);
U val = init;
nd_loop(
[&](int extra_offset) {
val = op(val, *(x_ptr + offset + extra_offset));
},
plan.shape,
plan.strides);
*out_ptr = val;
}
}
}
struct AndReduce {
template <typename T>
bool operator()(bool x, T y) {
return x & (y != 0);
}
bool operator()(bool x, bool y) {
return x & y;
}
template <int N, typename T>
simd::Simd<bool, N> operator()(simd::Simd<bool, N> y, simd::Simd<T, N> x) {
return x & (y != 0);
};
template <int N>
simd::Simd<bool, N> operator()(simd::Simd<bool, N> y, simd::Simd<bool, N> x) {
return x & y;
};
template <int N, typename T>
bool operator()(simd::Simd<T, N> x) {
return simd::all(x);
};
};
struct OrReduce {
template <typename T>
bool operator()(bool x, T y) {
return x | (y != 0);
}
bool operator()(bool x, bool y) {
return x | y;
}
template <int N, typename T>
simd::Simd<bool, N> operator()(simd::Simd<bool, N> y, simd::Simd<T, N> x) {
return x | (y != 0);
};
template <int N>
simd::Simd<bool, N> operator()(simd::Simd<bool, N> y, simd::Simd<bool, N> x) {
return x | y;
};
template <int N, typename T>
bool operator()(simd::Simd<T, N> x) {
return simd::any(x);
};
};
struct MaxReduce {
template <typename T>
T operator()(T y, T x) {
return (*this)(simd::Simd<T, 1>(x), simd::Simd<T, 1>(y)).value;
};
template <int N, typename T>
simd::Simd<T, N> operator()(simd::Simd<T, N> y, simd::Simd<T, N> x) {
return simd::maximum(x, y);
};
template <int N, typename T>
T operator()(simd::Simd<T, N> x) {
return simd::max(x);
};
};
struct MinReduce {
template <typename T>
T operator()(T y, T x) {
return (*this)(simd::Simd<T, 1>(x), simd::Simd<T, 1>(y)).value;
};
template <int N, typename T>
simd::Simd<T, N> operator()(simd::Simd<T, N> y, simd::Simd<T, N> x) {
return simd::minimum(x, y);
};
template <int N, typename T>
T operator()(simd::Simd<T, N> x) {
return simd::min(x);
};
};
struct SumReduce {
template <typename T, typename U>
U operator()(U y, T x) {
return x + y;
};
template <int N, typename T, typename U>
simd::Simd<U, N> operator()(simd::Simd<U, N> y, simd::Simd<T, N> x) {
return y + x;
};
template <int N, typename T>
T operator()(simd::Simd<T, N> x) {
return simd::sum(x);
};
};
struct ProdReduce {
template <typename T, typename U>
U operator()(U y, T x) {
return x * y;
};
template <int N, typename T, typename U>
simd::Simd<U, N> operator()(simd::Simd<U, N> y, simd::Simd<T, N> x) {
return x * y;
};
template <int N, typename T>
T operator()(simd::Simd<T, N> x) {
return simd::prod(x);
};
};
template <typename InT>
void reduce_dispatch_and_or(
const array& in,
array& out,
Reduce::ReduceType rtype,
const std::vector<int>& axes) {
if (rtype == Reduce::And) {
reduction_op<InT, bool>(in, out, axes, true, AndReduce());
} else {
reduction_op<InT, bool>(in, out, axes, false, OrReduce());
}
}
template <typename InT>
void reduce_dispatch_sum_prod(
const array& in,
array& out,
Reduce::ReduceType rtype,
const std::vector<int>& axes) {
if (rtype == Reduce::Sum) {
if constexpr (std::is_integral_v<InT> && sizeof(InT) <= 4) {
reduction_op<InT, int32_t>(in, out, axes, 0, SumReduce());
} else {
reduction_op<InT, InT>(in, out, axes, 0, SumReduce());
}
} else {
if constexpr (std::is_integral_v<InT> && sizeof(InT) <= 4) {
reduction_op<InT, int32_t>(in, out, axes, 1, ProdReduce());
} else {
reduction_op<InT, InT>(in, out, axes, 1, ProdReduce());
}
}
}
template <typename InT>
void reduce_dispatch_min_max(
const array& in,
array& out,
Reduce::ReduceType rtype,
const std::vector<int>& axes) {
if (rtype == Reduce::Max) {
auto init = Limits<InT>::min;
reduction_op<InT, InT>(in, out, axes, init, MaxReduce());
} else {
auto init = Limits<InT>::max;
reduction_op<InT, InT>(in, out, axes, init, MinReduce());
}
}
void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
switch (reduce_type_) {
case Reduce::And:
case Reduce::Or: {
switch (in.dtype()) {
case bool_:
case uint8:
case int8:
reduce_dispatch_and_or<int8_t>(in, out, reduce_type_, axes_);
break;
case int16:
case uint16:
case float16:
case bfloat16:
reduce_dispatch_and_or<int16_t>(in, out, reduce_type_, axes_);
break;
case uint32:
case int32:
case float32:
reduce_dispatch_and_or<int32_t>(in, out, reduce_type_, axes_);
break;
case uint64:
case int64:
case complex64:
reduce_dispatch_and_or<int64_t>(in, out, reduce_type_, axes_);
break;
}
break;
}
case Reduce::Sum:
case Reduce::Prod: {
switch (in.dtype()) {
case bool_:
case uint8:
case int8:
reduce_dispatch_sum_prod<int8_t>(in, out, reduce_type_, axes_);
break;
case int16:
case uint16:
reduce_dispatch_sum_prod<int16_t>(in, out, reduce_type_, axes_);
break;
case int32:
case uint32:
reduce_dispatch_sum_prod<int32_t>(in, out, reduce_type_, axes_);
break;
case int64:
case uint64:
reduce_dispatch_sum_prod<int64_t>(in, out, reduce_type_, axes_);
break;
case float16:
reduce_dispatch_sum_prod<float16_t>(in, out, reduce_type_, axes_);
break;
case bfloat16:
reduce_dispatch_sum_prod<bfloat16_t>(in, out, reduce_type_, axes_);
break;
case float32:
reduce_dispatch_sum_prod<float>(in, out, reduce_type_, axes_);
break;
case complex64:
reduce_dispatch_sum_prod<complex64_t>(in, out, reduce_type_, axes_);
break;
}
break;
}
case Reduce::Max:
case Reduce::Min: {
switch (in.dtype()) {
case bool_:
reduce_dispatch_min_max<bool>(in, out, reduce_type_, axes_);
break;
case uint8:
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
break;
case uint16:
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
break;
case uint32:
reduce_dispatch_min_max<uint32_t>(in, out, reduce_type_, axes_);
break;
case uint64:
reduce_dispatch_min_max<uint64_t>(in, out, reduce_type_, axes_);
break;
case int8:
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
break;
case int16:
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
break;
case int32:
reduce_dispatch_min_max<int32_t>(in, out, reduce_type_, axes_);
break;
case int64:
reduce_dispatch_min_max<int64_t>(in, out, reduce_type_, axes_);
break;
case float16:
reduce_dispatch_min_max<float16_t>(in, out, reduce_type_, axes_);
break;
case float32:
reduce_dispatch_min_max<float>(in, out, reduce_type_, axes_);
break;
case bfloat16:
reduce_dispatch_min_max<bfloat16_t>(in, out, reduce_type_, axes_);
break;
case complex64:
reduce_dispatch_min_max<complex64_t>(in, out, reduce_type_, axes_);
break;
}
break;
}
}
}
} // namespace mlx::core

View File

@ -2,9 +2,9 @@
#include <cassert> #include <cassert>
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/simd/simd.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/simd/simd.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
namespace mlx::core { namespace mlx::core {

View File

@ -2,8 +2,8 @@
#include <cassert> #include <cassert>
#include "mlx/backend/common/binary_ops.h" #include "mlx/backend/cpu/binary_ops.h"
#include "mlx/backend/common/ternary.h" #include "mlx/backend/cpu/ternary.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
namespace mlx::core { namespace mlx::core {

View File

@ -1,9 +1,9 @@
#pragma once #pragma once
#include "mlx/backend/common/simd/base_simd.h" #include "mlx/backend/cpu/simd/base_simd.h"
#if MLX_SIMD_LIBRARY_VERSION < 6 #if MLX_SIMD_LIBRARY_VERSION < 6
#include "mlx/backend/common/simd/neon_fp16_simd.h" #include "mlx/backend/cpu/simd/neon_fp16_simd.h"
#endif #endif
namespace mlx::core::simd { namespace mlx::core::simd {

View File

@ -7,7 +7,7 @@
#include <cmath> #include <cmath>
#include <complex> #include <complex>
#include "mlx/backend/common/simd/base_simd.h" #include "mlx/backend/cpu/simd/base_simd.h"
// There seems to be a bug in sims/base.h // There seems to be a bug in sims/base.h
// __XROS_2_0 is not defined, the expression evaluates // __XROS_2_0 is not defined, the expression evaluates
@ -299,5 +299,5 @@ T prod(Simd<T, N> x) {
} // namespace mlx::core::simd } // namespace mlx::core::simd
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#include "mlx/backend/common/simd/accelerate_fp16_simd.h" #include "mlx/backend/cpu/simd/accelerate_fp16_simd.h"
#endif #endif

View File

@ -2,7 +2,7 @@
#pragma once #pragma once
#include "mlx/backend/common/simd/type.h" #include "mlx/backend/cpu/simd/type.h"
namespace mlx::core::simd { namespace mlx::core::simd {

View File

@ -2,7 +2,7 @@
#include <arm_neon.h> #include <arm_neon.h>
#include "mlx/backend/common/simd/base_simd.h" #include "mlx/backend/cpu/simd/base_simd.h"
namespace mlx::core::simd { namespace mlx::core::simd {

View File

@ -0,0 +1,4 @@
#pragma once
#include "mlx/backend/cpu/simd/math.h"
#include "mlx/backend/cpu/simd/type.h"

View File

@ -0,0 +1,7 @@
#pragma once
#include "mlx/backend/cpu/simd/base_simd.h"
#ifdef MLX_USE_ACCELERATE
#include "mlx/backend/cpu/simd/accelerate_simd.h"
#endif

21
mlx/backend/cpu/slicing.h Normal file
View File

@ -0,0 +1,21 @@
// Copyright © 2024 Apple Inc.
#pragma once
#include "mlx/array.h"
namespace mlx::core {
std::tuple<int64_t, Strides> prepare_slice(
const array& in,
const Shape& start_indices,
const Shape& strides);
void shared_buffer_slice(
const array& in,
const Strides& out_strides,
size_t data_offset,
size_t data_size,
array& out);
} // namespace mlx::core

View File

@ -3,8 +3,8 @@
#include <cassert> #include <cassert>
#include <cmath> #include <cmath>
#include "mlx/backend/common/copy.h" #include "mlx/backend/cpu/copy.h"
#include "mlx/backend/common/simd/simd.h" #include "mlx/backend/cpu/simd/simd.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
namespace mlx::core { namespace mlx::core {

View File

@ -5,8 +5,8 @@
#include <cmath> #include <cmath>
#include <numeric> #include <numeric>
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"

View File

@ -1,8 +1,8 @@
// Copyright © 2024 Apple Inc. // Copyright © 2024 Apple Inc.
#include "mlx/allocator.h" #include "mlx/allocator.h"
#include "mlx/backend/common/copy.h" #include "mlx/backend/cpu/copy.h"
#include "mlx/backend/common/lapack.h" #include "mlx/backend/cpu/lapack.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
namespace mlx::core { namespace mlx::core {

157
mlx/backend/cpu/ternary.h Normal file
View File

@ -0,0 +1,157 @@
// Copyright © 2023 Apple Inc.
#pragma once
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/common/ternary.h"
#include "mlx/backend/common/utils.h"
namespace mlx::core {
template <typename T1, typename T2, typename T3, typename U, typename Op, int D>
void ternary_op_dims(
const T1* a,
const T2* b,
const T3* c,
U* out,
Op op,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& c_strides,
const Strides& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
auto stride_c = c_strides[axis];
auto stride_out = out_strides[axis];
auto N = shape[axis];
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
ternary_op_dims<T1, T2, T3, U, Op, D - 1>(
a,
b,
c,
out,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
axis + 1);
} else {
*out = op(*a, *b, *c);
}
a += stride_a;
b += stride_b;
c += stride_c;
out += stride_out;
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dispatch_dims(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
auto [shape, strides] = collapse_contiguous_dims(
a.shape(), {a.strides(), b.strides(), c.strides(), out.strides()});
const auto& a_strides = strides[0];
const auto& b_strides = strides[1];
const auto& c_strides = strides[2];
const auto& out_strides = strides[3];
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* out_ptr = out.data<T3>();
int ndim = shape.size();
switch (ndim) {
case 1:
ternary_op_dims<T1, T2, T3, U, Op, 1>(
a_ptr,
b_ptr,
c_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
0);
return;
case 2:
ternary_op_dims<T1, T2, T3, U, Op, 2>(
a_ptr,
b_ptr,
c_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
0);
return;
}
ContiguousIterator a_it(shape, a_strides, ndim - 2);
ContiguousIterator b_it(shape, b_strides, ndim - 2);
ContiguousIterator c_it(shape, c_strides, ndim - 2);
auto stride = out_strides[ndim - 3];
for (size_t elem = 0; elem < a.size(); elem += stride) {
ternary_op_dims<T1, T2, T3, U, Op, 2>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
c_ptr + c_it.loc,
out_ptr + elem,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
ndim - 2);
a_it.step();
b_it.step();
c_it.step();
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
TernaryOpType topt = get_ternary_op_type(a, b, c);
set_ternary_op_output_data(a, b, c, out, topt);
// The full computation is scalar-scalar-scalar so we call the base op once.
if (topt == TernaryOpType::ScalarScalarScalar) {
*(out.data<U>()) = op(*a.data<T1>(), *b.data<T2>(), *c.data<T3>());
} else if (topt == TernaryOpType::VectorVectorVector) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* out_ptr = out.data<U>();
for (size_t i = 0; i < out.size(); ++i) {
*out_ptr = op(*a_ptr, *b_ptr, *c_ptr);
a_ptr++;
b_ptr++;
c_ptr++;
out_ptr++;
}
} else {
ternary_op_dispatch_dims<T1, T2, T3, U>(a, b, c, out, op);
}
}
} // namespace mlx::core

View File

@ -1,6 +1,6 @@
// Copyright © 2023 Apple Inc. // Copyright © 2023 Apple Inc.
#include "mlx/backend/common/threefry.h" #include "mlx/backend/cpu/threefry.h"
namespace mlx::core::random { namespace mlx::core::random {

View File

@ -2,8 +2,8 @@
#include <cassert> #include <cassert>
#include "mlx/backend/common/unary.h" #include "mlx/backend/cpu/unary.h"
#include "mlx/backend/common/unary_ops.h" #include "mlx/backend/cpu/unary_ops.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
namespace mlx::core { namespace mlx::core {

View File

@ -4,14 +4,12 @@
#include "mlx/allocator.h" #include "mlx/allocator.h"
#include "mlx/array.h" #include "mlx/array.h"
#include "mlx/backend/common/simd/simd.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/simd/simd.h"
#include "mlx/utils.h" #include "mlx/utils.h"
namespace mlx::core { namespace mlx::core {
namespace {
void set_unary_output_data(const array& in, array& out) { void set_unary_output_data(const array& in, array& out) {
if (is_donatable(in, out)) { if (is_donatable(in, out)) {
out.copy_shared_buffer(in); out.copy_shared_buffer(in);
@ -137,6 +135,4 @@ void unary_fp(const array& a, array& out, Op op) {
} }
} }
} // namespace
} // namespace mlx::core } // namespace mlx::core

View File

@ -6,7 +6,7 @@
#include <cmath> #include <cmath>
#include <complex> #include <complex>
#include "mlx/backend/common/simd/simd.h" #include "mlx/backend/cpu/simd/simd.h"
namespace mlx::core::detail { namespace mlx::core::detail {

View File

@ -2,6 +2,7 @@
#include <sstream> #include <sstream>
#include "mlx/backend/common/utils.h"
#include "mlx/backend/metal/copy.h" #include "mlx/backend/metal/copy.h"
#include "mlx/backend/metal/device.h" #include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels.h" #include "mlx/backend/metal/kernels.h"

View File

@ -6,6 +6,7 @@
#include <set> #include <set>
#include "mlx/3rdparty/pocketfft.h" #include "mlx/3rdparty/pocketfft.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/metal/binary.h" #include "mlx/backend/metal/binary.h"
#include "mlx/backend/metal/copy.h" #include "mlx/backend/metal/copy.h"
#include "mlx/backend/metal/kernels.h" #include "mlx/backend/metal/kernels.h"

View File

@ -5,6 +5,7 @@
#include <numeric> #include <numeric>
#include <sstream> #include <sstream>
#include "mlx/backend/common/utils.h"
#include "mlx/backend/metal/copy.h" #include "mlx/backend/metal/copy.h"
#include "mlx/backend/metal/device.h" #include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels.h" #include "mlx/backend/metal/kernels.h"

View File

@ -1,10 +1,2 @@
target_sources( target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
mlx ${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp)
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../common/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/../common/common.cpp
${CMAKE_CURRENT_SOURCE_DIR}/../common/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/../common/compiled_nocpu.cpp
${CMAKE_CURRENT_SOURCE_DIR}/../common/reduce_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/../common/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/../common/utils.cpp)

View File

@ -1,6 +1,7 @@
// Copyright © 2023-2024 Apple Inc. // Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/common/compiled.h" #include "mlx/compile_impl.h"
#include "mlx/primitives.h"
namespace mlx::core { namespace mlx::core {

View File

@ -3,7 +3,7 @@
#include <dlfcn.h> #include <dlfcn.h>
#include <mpi.h> #include <mpi.h>
#include "mlx/backend/common/copy.h" #include "mlx/backend/cpu/copy.h"
#include "mlx/distributed/distributed.h" #include "mlx/distributed/distributed.h"
#include "mlx/distributed/distributed_impl.h" #include "mlx/distributed/distributed_impl.h"
#include "mlx/distributed/mpi/mpi.h" #include "mlx/distributed/mpi/mpi.h"

View File

@ -13,7 +13,7 @@
#include <json.hpp> #include <json.hpp>
#include "mlx/backend/common/copy.h" #include "mlx/backend/cpu/copy.h"
#include "mlx/distributed/distributed.h" #include "mlx/distributed/distributed.h"
#include "mlx/distributed/distributed_impl.h" #include "mlx/distributed/distributed_impl.h"
#include "mlx/threadpool.h" #include "mlx/threadpool.h"