Tmp FFT commit

This commit is contained in:
Angelos Katharopoulos 2025-04-30 15:12:39 -07:00
parent 0cae0bdac8
commit 1704809f29
7 changed files with 178 additions and 85 deletions

View File

@ -6,4 +6,5 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp ${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp ${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp ${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/transpose.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp) ${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp)

View File

@ -2,6 +2,7 @@
#include <cassert> #include <cassert>
#include "mlx/backend/common/broadcasting.h" #include "mlx/backend/common/broadcasting.h"
#include "mlx/backend/common/transpose.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
@ -19,26 +20,19 @@ void AsStrided::eval(const std::vector<array>& inputs, array& out) {
"AsStrided must be used with row contiguous arrays only."); "AsStrided must be used with row contiguous arrays only.");
} }
// Compute the flags given the shape and strides // Calculate the contiguity based on the given shape and strides
bool row_contiguous = true, col_contiguous = true; auto [ds, rc, cc] = check_contiguity(shape_, strides_);
size_t r = 1, c = 1;
for (int i = strides_.size() - 1, j = 0; i >= 0; i--, j++) {
row_contiguous &= (r == strides_[i]) || (shape_[i] == 1);
col_contiguous &= (c == strides_[j]) || (shape_[j] == 1);
r *= shape_[i];
c *= shape_[j];
}
auto flags = in.flags(); auto flags = in.flags();
// TODO: Compute the contiguous flag in a better way cause now we are // TODO: Compute the contiguous flag in a better way cause now we are
// unnecessarily strict. // unnecessarily strict.
flags.contiguous = row_contiguous || col_contiguous; flags.contiguous = rc || cc;
flags.row_contiguous = row_contiguous; flags.row_contiguous = rc;
flags.col_contiguous = col_contiguous; flags.col_contiguous = cc;
// There is no easy way to compute the actual data size so we use out.size(). // There is no easy way to compute the actual data size so we use out.size()
// The contiguous flag will almost certainly not be set so no code should // when the array is not contiguous.
// rely on data_size anyway. size_t data_size = flags.contiguous ? ds : out.size();
size_t data_size = out.size();
return out.copy_shared_buffer(in, strides_, flags, data_size, offset_); return out.copy_shared_buffer(in, strides_, flags, data_size, offset_);
} }
@ -270,36 +264,7 @@ void StopGradient::eval(const std::vector<array>& inputs, array& out) {
void Transpose::eval(const std::vector<array>& inputs, array& out) { void Transpose::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1); assert(inputs.size() == 1);
Strides out_strides(out.ndim()); transpose(inputs[0], out, axes_);
auto& in = inputs[0];
for (int ax = 0; ax < axes_.size(); ++ax) {
out_strides[ax] = in.strides()[axes_[ax]];
}
// Conditions for {row/col}_contiguous
// - array must be contiguous (no gaps)
// - underlying buffer size should have the same size as the array
// - cumulative product of shapes is equal to the strides (we can ignore axes
// with size == 1)
// - in the forward direction (column contiguous)
// - in the reverse direction (row contiguous)
// - vectors are both row and col contiguous (hence if both row/col are
// true, they stay true)
auto flags = in.flags();
if (flags.contiguous && in.data_size() == in.size()) {
int64_t f_stride = 1;
int64_t b_stride = 1;
flags.col_contiguous = true;
flags.row_contiguous = true;
for (int i = 0, ri = out.ndim() - 1; i < out.ndim(); ++i, --ri) {
flags.col_contiguous &= (out_strides[i] == f_stride || out.shape(i) == 1);
f_stride *= out.shape(i);
flags.row_contiguous &=
(out_strides[ri] == b_stride || out.shape(ri) == 1);
b_stride *= out.shape(ri);
}
}
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
} }
} // namespace mlx::core } // namespace mlx::core

View File

@ -0,0 +1,31 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/common/utils.h"
namespace mlx::core {
void transpose(const array& in, array& out, const std::vector<int>& axes) {
Strides out_strides(out.ndim());
for (int ax = 0; ax < axes.size(); ++ax) {
out_strides[ax] = in.strides()[axes[ax]];
}
// Conditions for {row/col}_contiguous
// - array must be contiguous (no gaps)
// - underlying buffer size should have the same size as the array
// - cumulative product of shapes is equal to the strides (we can ignore axes
// with size == 1)
// - in the forward direction (column contiguous)
// - in the reverse direction (row contiguous)
// - vectors are both row and col contiguous (hence if both row/col are
// true, they stay true)
auto flags = in.flags();
if (flags.contiguous && in.data_size() == in.size()) {
auto [_, rc, cc] = check_contiguity(out.shape(), out_strides);
flags.row_contiguous = rc;
flags.col_contiguous = cc;
}
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
}
} // namespace mlx::core

View File

@ -0,0 +1,11 @@
// Copyright © 2024 Apple Inc.
#pragma once
#include "mlx/array.h"
namespace mlx::core {
void transpose(const array& in, array& out, const std::vector<int>& axes);
} // namespace mlx::core

View File

@ -132,6 +132,11 @@ struct ContiguousIterator {
}; };
inline auto check_contiguity(const Shape& shape, const Strides& strides) { inline auto check_contiguity(const Shape& shape, const Strides& strides) {
// Conditions for {row/col}_contiguous
// - cumulative product of shapes is equal to the strides (we can ignore axes
// with size == 1)
// - in the forward direction (column contiguous)
// - in the reverse direction (row contiguous)
size_t no_broadcast_data_size = 1; size_t no_broadcast_data_size = 1;
int64_t f_stride = 1; int64_t f_stride = 1;
int64_t b_stride = 1; int64_t b_stride = 1;

View File

@ -71,7 +71,12 @@ void Contiguous::eval_gpu(const std::vector<array>& inputs, array& out) {
(allow_col_major_ && in.flags().col_contiguous))) { (allow_col_major_ && in.flags().col_contiguous))) {
out.copy_shared_buffer(in); out.copy_shared_buffer(in);
} else { } else {
copy_gpu(in, out, CopyType::General); out.set_data(allocator::malloc(out.nbytes()));
copy_gpu_inplace(
in,
out,
in.flags().row_contiguous ? CopyType::Vector : CopyType::General,
stream());
} }
} }

View File

@ -1,11 +1,13 @@
// Copyright © 2024 Apple Inc. // Copyright © 2024 Apple Inc.
#include <cassert> #include <cassert>
#include <complex> #include <complex>
#include <iostream>
#include <map> #include <map>
#include <numeric> #include <numeric>
#include <set> #include <set>
#include "mlx/3rdparty/pocketfft.h" #include "mlx/3rdparty/pocketfft.h"
#include "mlx/backend/common/transpose.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/gpu/copy.h" #include "mlx/backend/gpu/copy.h"
#include "mlx/backend/gpu/slicing.h" #include "mlx/backend/gpu/slicing.h"
@ -27,7 +29,7 @@ using MTLFC = std::tuple<const void*, MTL::DataType, NS::UInteger>;
// For strided reads/writes, coalesce at least this many complex64s // For strided reads/writes, coalesce at least this many complex64s
#define MIN_COALESCE_WIDTH 4 #define MIN_COALESCE_WIDTH 4
inline const std::vector<int> supported_radices() { inline constexpr std::array<int, 9> supported_radices() {
// Ordered by preference in decomposition. // Ordered by preference in decomposition.
return {13, 11, 8, 7, 6, 5, 4, 3, 2}; return {13, 11, 8, 7, 6, 5, 4, 3, 2};
} }
@ -65,6 +67,7 @@ void fft_op(
bool real, bool real,
const FourStepParams four_step_params, const FourStepParams four_step_params,
bool inplace, bool inplace,
metal::Device& d,
const Stream& s); const Stream& s);
struct FFTPlan { struct FFTPlan {
@ -112,13 +115,10 @@ std::vector<int> plan_stockham_fft(int n) {
FFTPlan plan_fft(int n) { FFTPlan plan_fft(int n) {
auto radices = supported_radices(); auto radices = supported_radices();
std::set<int> radices_set(radices.begin(), radices.end());
FFTPlan plan; FFTPlan plan;
plan.n = n; plan.n = n;
plan.rader = std::vector<int>(radices.size(), 0); plan.rader = std::vector<int>(radices.size(), 0);
auto factors = prime_factors(n);
int remaining_n = n;
// Four Step FFT when N is too large for shared mem. // Four Step FFT when N is too large for shared mem.
if (n > MAX_STOCKHAM_FFT_SIZE && is_power_of_2(n)) { if (n > MAX_STOCKHAM_FFT_SIZE && is_power_of_2(n)) {
@ -128,16 +128,20 @@ FFTPlan plan_fft(int n) {
plan.n2 = n > 65536 ? 1024 : 64; plan.n2 = n > 65536 ? 1024 : 64;
plan.n1 = n / plan.n2; plan.n1 = n / plan.n2;
return plan; return plan;
} else if (n > MAX_STOCKHAM_FFT_SIZE) { }
if (n > MAX_STOCKHAM_FFT_SIZE) {
// Otherwise we use a multi-upload Bluestein's // Otherwise we use a multi-upload Bluestein's
plan.four_step = true; plan.four_step = true;
plan.bluestein_n = next_fast_n(2 * n - 1); plan.bluestein_n = next_fast_n(2 * n - 1);
return plan; return plan;
} }
int remaining_n = n;
auto factors = prime_factors(n);
for (int factor : factors) { for (int factor : factors) {
// Make sure the factor is a supported radix // Make sure the factor is a supported radix
if (radices_set.find(factor) == radices_set.end()) { if (std::find(radices.begin(), radices.end(), factor) == radices.end()) {
// We only support a single Rader factor currently // We only support a single Rader factor currently
// TODO(alexbarron) investigate weirdness with large // TODO(alexbarron) investigate weirdness with large
// Rader sizes -- possibly a compiler issue? // Rader sizes -- possibly a compiler issue?
@ -154,7 +158,7 @@ FFTPlan plan_fft(int n) {
for (int rf : rader_factors) { for (int rf : rader_factors) {
// We don't nest Rader's algorithm so if `factor - 1` // We don't nest Rader's algorithm so if `factor - 1`
// isn't Stockham decomposable we give up and do Bluestein's. // isn't Stockham decomposable we give up and do Bluestein's.
if (radices_set.find(rf) == radices_set.end()) { if (std::find(radices.begin(), radices.end(), rf) == radices.end()) {
plan.four_step = n > MAX_BLUESTEIN_FFT_SIZE; plan.four_step = n > MAX_BLUESTEIN_FFT_SIZE;
plan.bluestein_n = next_fast_n(2 * n - 1); plan.bluestein_n = next_fast_n(2 * n - 1);
plan.stockham = plan_stockham_fft(plan.bluestein_n); plan.stockham = plan_stockham_fft(plan.bluestein_n);
@ -358,6 +362,8 @@ void multi_upload_bluestein_fft(
FFTPlan& plan, FFTPlan& plan,
std::vector<array>& copies, std::vector<array>& copies,
const Stream& s) { const Stream& s) {
auto& d = metal::device(s.device);
// TODO(alexbarron) Implement fused kernels for mutli upload bluestein's // TODO(alexbarron) Implement fused kernels for mutli upload bluestein's
// algorithm // algorithm
int n = inverse ? out.shape(axis) : in.shape(axis); int n = inverse ? out.shape(axis) : in.shape(axis);
@ -420,6 +426,7 @@ void multi_upload_bluestein_fft(
/*real=*/false, /*real=*/false,
FourStepParams(), FourStepParams(),
/*inplace=*/false, /*inplace=*/false,
d,
s); s);
copies.push_back(pad_temp1); copies.push_back(pad_temp1);
@ -435,6 +442,7 @@ void multi_upload_bluestein_fft(
/* real= */ false, /* real= */ false,
FourStepParams(), FourStepParams(),
/*inplace=*/true, /*inplace=*/true,
d,
s); s);
int offset = plan.bluestein_n - (2 * n - 1); int offset = plan.bluestein_n - (2 * n - 1);
@ -493,7 +501,15 @@ void four_step_fft(
auto temp_shape = (real && inverse) ? out.shape() : in.shape(); auto temp_shape = (real && inverse) ? out.shape() : in.shape();
array temp(temp_shape, complex64, nullptr, {}); array temp(temp_shape, complex64, nullptr, {});
fft_op( fft_op(
in, temp, axis, inverse, real, four_step_params, /*inplace=*/false, s); in,
temp,
axis,
inverse,
real,
four_step_params,
/*inplace=*/false,
d,
s);
four_step_params.first_step = false; four_step_params.first_step = false;
fft_op( fft_op(
temp, temp,
@ -503,6 +519,7 @@ void four_step_fft(
real, real,
four_step_params, four_step_params,
/*inplace=*/in_place, /*inplace=*/in_place,
d,
s); s);
copies.push_back(temp); copies.push_back(temp);
} else { } else {
@ -518,9 +535,8 @@ void fft_op(
bool real, bool real,
const FourStepParams four_step_params, const FourStepParams four_step_params,
bool inplace, bool inplace,
metal::Device& d,
const Stream& s) { const Stream& s) {
auto& d = metal::device(s.device);
size_t n = out.dtype() == float32 ? out.shape(axis) : in.shape(axis); size_t n = out.dtype() == float32 ? out.shape(axis) : in.shape(axis);
if (n == 1) { if (n == 1) {
out.copy_shared_buffer(in); out.copy_shared_buffer(in);
@ -755,57 +771,116 @@ void fft_op(
d.add_temporaries(std::move(copies), s.index); d.add_temporaries(std::move(copies), s.index);
} }
void fft_op( inline array prepare_input(
void fft_stockham_inplace(
const array& in, const array& in,
array& out, array& out,
size_t axis, size_t axis,
bool inverse, bool inverse,
bool real, bool real,
bool inplace, metal::Device& d,
const Stream& s) { const Stream& s) {
fft_op(in, out, axis, inverse, real, FourStepParams(), inplace, s);
} }
void nd_fft_op( void fft_op_inplace(
const array& in,
array& out,
size_t axis,
bool inverse,
bool real,
metal::Device &d,
const Stream& s) {
// Get the FFT size and plan it
size_t n = out.dtype() == float32 ? out.shape(axis) : in.shape(axis);
auto plan = plan_fft(n);
if (n == 1) {
std::cout << "--------------> 1-size FFT <-----------------" << std::endl;
}
if (plan.four_step && plan.bluestein_n < 0) {
// four_step_fft(in, out, axis, inverse, real, plan, inplace, d, s);
return;
}
}
void nd_fft_op_inplace(
const array& in, const array& in,
array& out, array& out,
const std::vector<size_t>& axes, const std::vector<size_t>& axes,
bool inverse, bool inverse,
bool real, bool real,
metal::Device &d,
const Stream& s) { const Stream& s) {
// Perform ND FFT on GPU as a series of 1D FFTs // We are going to make and possibly reuse some intermediate arrays that will
auto temp_shape = inverse ? in.shape() : out.shape(); // hold the intermediate fft results.
array temp1(temp_shape, complex64, nullptr, {}); auto shape = inverse ? in.shape() : out.shape();
array temp2(temp_shape, complex64, nullptr, {}); std::vector<array> intermediates;
std::vector<array> temp_arrs = {temp1, temp2}; intermediates.reserve(2);
for (int i = axes.size() - 1; i >= 0; i--) {
int reverse_index = axes.size() - i - 1; // Utility to return either in or one of the intermediates.
// For 5D and above, we don't want to reallocate our two temporary arrays auto get_input_array = [&](int step) -> const array& {
bool inplace = reverse_index >= 3 && i != 0; // The first step so use the input array
// Opposite order for fft vs ifft if (step == 0) {
int index = inverse ? reverse_index : i; return in;
size_t axis = axes[index];
// Mirror np.fft.(i)rfftn and perform a real transform
// only on the final axis.
bool step_real = (real && index == axes.size() - 1);
auto step_shape = inverse ? out.shape(axis) : in.shape(axis);
const array& in_arr = i == axes.size() - 1 ? in : temp_arrs[1 - i % 2];
array& out_arr = i == 0 ? out : temp_arrs[i % 2];
fft_op(in_arr, out_arr, axis, inverse, step_real, inplace, s);
} }
auto& d = metal::device(s.device); return intermediates[(step - 1) % 2];
d.add_temporaries(std::move(temp_arrs), s.index); };
// Utility to return either out or one of the intermediates. It also informs
// us if we should allocate memory for that output or there is already some
// allocated.
auto get_output_array = [&](int step) -> array& {
// It is the final step so return the output array
if (step == axes.size() - 1) {
return out;
}
// We already have made an array that we can use so go ahead and use it and
// don't reallocate the memory.
if (step % 2 < intermediates.size()) {
return intermediates[step % 2];
}
array x(shape, complex64, nullptr, {});
x.set_data(allocator::malloc(x.nbytes()));
intermediates.emplace_back(std::move(x));
d.add_temporary(intermediates.back(), s.index);
return intermediates.back();
};
// Perform ND FFT on GPU as a series of 1D FFTs
for (int step = 0; step < axes.size(); step++) {
auto x = get_input_array(step);
auto y = get_output_array(step);
auto step_axis = axes[inverse ? step : axes.size() - step - 1];
auto step_real = real && (inverse ? step == axes.size() - 1 : step == 0);
fft_op_inplace(x, y, step_axis, inverse, step_real, d, s);
}
} }
void FFT::eval_gpu(const std::vector<array>& inputs, array& out) { void FFT::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& s = stream(); auto& s = stream();
auto& d = metal::device(s.device);
auto& in = inputs[0]; auto& in = inputs[0];
// The FFT ops above have the *_inplace suffix. This means that the memory
// needs to be already allocated in the output array. Similar to
// copy_gpu_inplace and so on.
//
// Even though we allocate the memory, we do not necessarily want the
// contiguous strides so the *_inplace ops may change the strides and flags
// of the array but will not reallocate the memory.
out.set_data(allocator::malloc(out.nbytes()));
if (axes_.size() > 1) { if (axes_.size() > 1) {
nd_fft_op(in, out, axes_, inverse_, real_, s); nd_fft_op_inplace(in, out, axes_, inverse_, real_, d, s);
} else { } else {
fft_op(in, out, axes_[0], inverse_, real_, /*inplace=*/false, s); fft_op_inplace(in, out, axes_[0], inverse_, real_, d, s);
} }
} }