mirror of
https://github.com/ml-explore/mlx.git
synced 2025-11-06 03:58:12 +08:00
Add batch offsets for mx.fast.rope (#2564)
* implement batch rope for Metal * cuda rope (#2576)
This commit is contained in:
@@ -164,8 +164,13 @@ void init_fast(nb::module_& parent_module) {
|
||||
R"pbdoc(
|
||||
Apply rotary positional encoding to the input.
|
||||
|
||||
The input is expected to be at least 3D with shape ``(B, *, T, D)`` where:
|
||||
* ``B`` is the batch size.
|
||||
* ``T`` is the sequence length.
|
||||
* ``D`` is the feature dimension.
|
||||
|
||||
Args:
|
||||
a (array): Input array.
|
||||
a (array): The input array.
|
||||
dims (int): The feature dimensions to be rotated. If the input feature
|
||||
is larger than dims then the rest is left unchanged.
|
||||
traditional (bool): If set to ``True`` choose the traditional
|
||||
@@ -174,7 +179,9 @@ void init_fast(nb::module_& parent_module) {
|
||||
each dimension in the positional encodings. Exactly one of ``base`` and
|
||||
``freqs`` must be ``None``.
|
||||
scale (float): The scale used to scale the positions.
|
||||
offset (int or array): The position offset to start at.
|
||||
offset (int or array): The position offset to start at. If an
|
||||
:obj:`array` is given it can be a scalar or vector of ``B``
|
||||
offsets for each example in the batch.
|
||||
freqs (array, optional): Optional frequencies to use with RoPE.
|
||||
If set, the ``base`` parameter must be ``None``. Default: ``None``.
|
||||
|
||||
|
||||
@@ -91,7 +91,7 @@ mx::array to_array_with_accessor(nb::object obj) {
|
||||
return nb::cast<mx::array>(obj.attr("__mlx_array__")());
|
||||
} else {
|
||||
std::ostringstream msg;
|
||||
msg << "Invalid type " << nb::type_name(obj.type()).c_str()
|
||||
msg << "Invalid type " << nb::type_name(obj.type()).c_str()
|
||||
<< " received in array initialization.";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
@@ -8,18 +8,23 @@ import mlx_tests
|
||||
|
||||
|
||||
def rope_orig(x, dims, traditional, base, scale, offset, freqs=None):
|
||||
offset = offset.item() if isinstance(offset, mx.array) else offset
|
||||
N = x.shape[-2] + offset
|
||||
N = x.shape[-2]
|
||||
dtype = x.dtype
|
||||
half_D = dims // 2
|
||||
positions = mx.arange(offset, N, dtype=dtype) * scale
|
||||
positions = mx.arange(N, dtype=dtype)
|
||||
if isinstance(offset, mx.array) and offset.size > 1:
|
||||
expand = tuple(range(1, x.ndim - 1))
|
||||
positions = mx.expand_dims(offset, expand) + positions
|
||||
else:
|
||||
positions = offset + positions
|
||||
positions = positions * scale
|
||||
if freqs is None:
|
||||
inv_freqs = mx.exp(
|
||||
-mx.arange(0.0, half_D, dtype=dtype) * (math.log(base) / half_D)
|
||||
)
|
||||
else:
|
||||
inv_freqs = (1 / freqs).astype(x.dtype)
|
||||
theta = mx.reshape(positions, (-1, 1)) * mx.reshape(inv_freqs, (1, -1))
|
||||
theta = mx.expand_dims(positions, -1) * inv_freqs
|
||||
costheta, sintheta = mx.cos(theta), mx.sin(theta)
|
||||
if traditional:
|
||||
x1 = x[..., :dims:2]
|
||||
@@ -214,6 +219,7 @@ class TestFast(mlx_tests.MLXTestCase):
|
||||
)
|
||||
self.assertEqual(dtype, rx.dtype)
|
||||
self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
|
||||
return
|
||||
|
||||
# Test single vector
|
||||
x = mx.random.uniform(shape=(1, 1, dims))
|
||||
@@ -277,6 +283,55 @@ class TestFast(mlx_tests.MLXTestCase):
|
||||
g2 = mx.grad(f2)(x, y)
|
||||
self.assertLess(mx.abs(g1 - g2).max(), 1e-5)
|
||||
|
||||
def test_rope_batch(self):
|
||||
T = 4
|
||||
base = 10000.0
|
||||
scale = 1.0
|
||||
traditional = True
|
||||
batch_sizes = [3, 8, 11]
|
||||
num_heads = [1, 3, 5]
|
||||
dims = 32
|
||||
|
||||
x = mx.random.uniform(shape=(8, 4, T, dims))
|
||||
|
||||
offset = mx.array([1, 2, 3])
|
||||
with self.assertRaises(ValueError):
|
||||
mx.fast.rope(
|
||||
x,
|
||||
dims,
|
||||
traditional=traditional,
|
||||
base=base,
|
||||
scale=scale,
|
||||
offset=offset,
|
||||
)
|
||||
|
||||
for batch_size in batch_sizes:
|
||||
for n_head in num_heads:
|
||||
x = mx.random.uniform(shape=(batch_size, n_head, T, dims))
|
||||
offset = mx.arange(batch_size)
|
||||
rx = rope_orig(x, dims, traditional, base, scale, offset)
|
||||
rx_fast = mx.fast.rope(
|
||||
x,
|
||||
dims,
|
||||
traditional=traditional,
|
||||
base=base,
|
||||
scale=scale,
|
||||
offset=offset,
|
||||
)
|
||||
self.assertLess(mx.abs(rx - rx_fast).max(), 1e-5)
|
||||
x = mx.random.normal(shape=(2, 6, 8, 64)).transpose(0, 2, 1, 3)
|
||||
dims = 64
|
||||
offset = 0
|
||||
rx_fast = mx.fast.rope(
|
||||
x, dims, traditional=traditional, scale=scale, base=base, offset=offset
|
||||
)
|
||||
rx_fast_single = mx.fast.rope(
|
||||
x[0:1], dims, traditional=traditional, scale=scale, base=base, offset=offset
|
||||
)
|
||||
|
||||
rx = rope_orig(x, dims, traditional, base, scale, offset)
|
||||
self.assertLess(mx.abs(rx - rx_fast).max(), 1e-5)
|
||||
|
||||
def test_rms_norm(self):
|
||||
# Per dtype absolute tolerance
|
||||
tolerances = {mx.float32: 1e-6, mx.float16: 1e-3, mx.bfloat16: 1e-2}
|
||||
|
||||
Reference in New Issue
Block a user