mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Metal shaders for memory efficient self attention on large sequences (#964)
* Metal shaders for efficient self attention on large sequences Updated fast attention: GEMM-ified with Steel primitives Uses flash attention 1 for scale correction * more compiler silencing * Address rebase issues * Templatize kernel instantiation, revise cpu bindings * Safer writes to output * Permit batch size > 1 * Numerical fixes for sdpa self attention * Re-enable test, remove unused variable * add benchmarking script * Disable sdpa prior to perf tuning, and simplify tests for per-patch CI
This commit is contained in:
@@ -19,6 +19,140 @@
|
||||
namespace mlx::core::fast {
|
||||
|
||||
namespace {
|
||||
void sdpa_full_self_attention_metal(
|
||||
const Stream& s,
|
||||
metal::Device& d,
|
||||
const array& q,
|
||||
const array& k,
|
||||
const array& v,
|
||||
const float alpha,
|
||||
array& out,
|
||||
std::vector<array>& temporaries) {
|
||||
std::ostringstream kname_self_attention;
|
||||
kname_self_attention << "steel_gemm_attention_";
|
||||
|
||||
constexpr const int bm = 16;
|
||||
constexpr const int bn = 16;
|
||||
const int bk = q.shape(-1); // already forced to be 64 or 128
|
||||
|
||||
if (bk != 64 && bk != 128) {
|
||||
throw std::runtime_error(
|
||||
"[ScaledDotProductAttention::eval_gpu]: hidden dim: expected either 64, 128");
|
||||
}
|
||||
|
||||
constexpr const int wm = 2;
|
||||
constexpr const int wn = 2;
|
||||
|
||||
std::string delimiter = "_";
|
||||
|
||||
kname_self_attention << "bm_" + std::to_string(bm) + delimiter;
|
||||
kname_self_attention << "bn_" + std::to_string(bn) + delimiter;
|
||||
kname_self_attention << "bk_" + std::to_string(bk) + delimiter;
|
||||
|
||||
for (const auto& arr : {k, v, out}) {
|
||||
if (arr.dtype() != q.dtype()) {
|
||||
throw std::runtime_error(
|
||||
"[ScaledDotProductAttention::eval_gpu]: expected matching dtypes for q,k,v,o");
|
||||
}
|
||||
}
|
||||
|
||||
if (q.dtype() == float32) {
|
||||
kname_self_attention << "itype" + delimiter + "float";
|
||||
} else if (q.dtype() == float16) {
|
||||
kname_self_attention << "itype" + delimiter + "half";
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"[ScaledDotProductAttention::eval_gpu]: unexpected dtype found for queries: expected either float32 or float16.");
|
||||
}
|
||||
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname_self_attention.str());
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
uint hidden_dim = q.shape(-1);
|
||||
uint qseq = q.shape(-2);
|
||||
uint qheads = q.shape(-3);
|
||||
|
||||
const uint64_t KV_sequence_length = k.shape(-2);
|
||||
const uint query_sequence_length = q.shape(-2);
|
||||
const uint n_q_heads = q.shape(1);
|
||||
const uint n_kv_heads = k.shape(1);
|
||||
|
||||
const int M = q.shape(-2);
|
||||
const int N = M;
|
||||
const int K = q.shape(-1);
|
||||
const size_t batch_size_out = q.shape(0) * q.shape(1);
|
||||
|
||||
const std::vector<int> batch_shape = {q.shape(0) * q.shape(1)};
|
||||
const int dk = q.shape(-1);
|
||||
const int ldq = dk;
|
||||
const int ldk = dk;
|
||||
const int ldv = dk;
|
||||
const int lds = bn;
|
||||
const int ldo = dk;
|
||||
|
||||
int tn = 1;
|
||||
int tm = (M + bm - 1) / bm;
|
||||
|
||||
const int batch_stride_q = dk * query_sequence_length;
|
||||
const int batch_stride_k = dk * query_sequence_length;
|
||||
const int batch_stride_v = dk * query_sequence_length;
|
||||
const int batch_stride_o = dk * query_sequence_length;
|
||||
const int swizzle_log = 0;
|
||||
const int gemm_n_iterations_aligned = (N + bn - 1) / bn;
|
||||
const int gemm_k_iterations_aligned = (K + bk - 1) / bk;
|
||||
const int gemm_sv_m_block_iterations = (M + bm - 1) / bm;
|
||||
const int batch_ndim = int(batch_shape.size());
|
||||
|
||||
MLXFastAttentionParams params{
|
||||
(int)M,
|
||||
(int)N,
|
||||
(int)K,
|
||||
ldq,
|
||||
ldk,
|
||||
ldv,
|
||||
lds,
|
||||
ldo,
|
||||
tn,
|
||||
tm,
|
||||
batch_stride_q,
|
||||
batch_stride_k,
|
||||
batch_stride_v,
|
||||
batch_stride_o,
|
||||
swizzle_log,
|
||||
gemm_n_iterations_aligned,
|
||||
gemm_k_iterations_aligned,
|
||||
gemm_sv_m_block_iterations,
|
||||
batch_ndim,
|
||||
alpha};
|
||||
|
||||
const std::vector<size_t> batch_strides = {
|
||||
(size_t)batch_stride_q,
|
||||
(size_t)batch_stride_k,
|
||||
(size_t)batch_stride_v,
|
||||
(size_t)batch_stride_o};
|
||||
|
||||
compute_encoder.set_input_array(q, 0);
|
||||
compute_encoder.set_input_array(k, 1);
|
||||
compute_encoder.set_input_array(v, 2);
|
||||
compute_encoder.set_output_array(out, 3);
|
||||
|
||||
compute_encoder->setBytes(¶ms, sizeof(MLXFastAttentionParams), 4);
|
||||
compute_encoder->setBytes(
|
||||
batch_shape.data(), sizeof(int) * batch_shape.size(), 6);
|
||||
|
||||
compute_encoder->setBytes(
|
||||
batch_strides.data(), sizeof(size_t) * batch_strides.size(), 7);
|
||||
|
||||
MTL::Size grid_dims = MTL::Size(1, tm, batch_size_out);
|
||||
MTL::Size group_dims = MTL::Size(32, wm, wn);
|
||||
|
||||
compute_encoder->dispatchThreadgroups(grid_dims, group_dims);
|
||||
|
||||
d.get_command_buffer(s.index)->addCompletedHandler(
|
||||
[temporaries](MTL::CommandBuffer*) mutable { temporaries.clear(); });
|
||||
return;
|
||||
}
|
||||
|
||||
void sdpa_metal(
|
||||
const Stream& s,
|
||||
@@ -170,6 +304,12 @@ void ScaledDotProductAttention::eval_gpu(
|
||||
auto v = check_transpose(v_pre);
|
||||
|
||||
const int heads = q.shape(-3);
|
||||
|
||||
uint query_sequence_length = q.shape(-2);
|
||||
if (query_sequence_length >= 16) {
|
||||
return sdpa_full_self_attention_metal(
|
||||
s, d, q, k, v, scale_, out, temporaries);
|
||||
}
|
||||
int tile_size = 64;
|
||||
const int kv_seq_len = k.shape(-2);
|
||||
if (kv_seq_len > 8000) {
|
||||
|
||||
Reference in New Issue
Block a user