mirror of
https://github.com/ml-explore/mlx.git
synced 2025-10-19 16:48:10 +08:00
Add smoothed L1 loss and enhancements to cross entropy loss (#166)
* Add smooth_l1_loss * Add labels moothing for cross entropy loss --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
@@ -37,30 +37,169 @@ class TestNN(mlx_tests.MLXTestCase):
|
||||
expected_sum = mx.sum(expected_none)
|
||||
self.assertEqual(losses_sum, expected_sum)
|
||||
|
||||
# Test cases with weights and no label smoothing
|
||||
logits = mx.array([[2.0, -1.0], [-1.0, 2.0]])
|
||||
targets = mx.array([0, 1])
|
||||
weights = mx.array([1.0, 2.0])
|
||||
|
||||
# Reduction 'none'
|
||||
losses_none = nn.losses.cross_entropy(
|
||||
logits,
|
||||
targets,
|
||||
weights=weights,
|
||||
reduction="none",
|
||||
)
|
||||
expected_none = mx.array([0.04858735, 0.0971747]) # Calculated losses
|
||||
self.assertTrue(
|
||||
np.allclose(losses_none, expected_none, atol=1e-5),
|
||||
"Test case failed for cross_entropy loss --reduction='none' --weights=[1.0, 2.0]",
|
||||
)
|
||||
|
||||
# Reduction 'mean'
|
||||
losses_mean = nn.losses.cross_entropy(
|
||||
logits,
|
||||
targets,
|
||||
weights=weights,
|
||||
reduction="mean",
|
||||
)
|
||||
expected_mean = mx.mean(expected_none)
|
||||
self.assertTrue(
|
||||
np.allclose(losses_mean, expected_mean, atol=1e-5),
|
||||
"Test case failed for cross_entropy loss --reduction='mean' --weights=[1.0, 2.0]",
|
||||
)
|
||||
|
||||
# Reduction 'sum'
|
||||
losses_sum = nn.losses.cross_entropy(
|
||||
logits,
|
||||
targets,
|
||||
weights=weights,
|
||||
reduction="sum",
|
||||
)
|
||||
expected_sum = mx.sum(expected_none)
|
||||
self.assertTrue(
|
||||
np.allclose(losses_sum, expected_sum, atol=1e-5),
|
||||
"Test case failed for cross_entropy loss --reduction='sum' --weights=[1.0, 2.0]",
|
||||
)
|
||||
|
||||
# Test case with equal weights and label smoothing > 0
|
||||
logits = mx.array(
|
||||
[[0, 0.2, 0.7, 0.1, 0], [0, 0.9, 0.2, 0.2, 1], [1, 0.2, 0.7, 0.9, 1]]
|
||||
)
|
||||
target = mx.array([2, 1, 0])
|
||||
|
||||
losses_none = nn.losses.cross_entropy(
|
||||
logits, target, label_smoothing=0.3, reduction="none"
|
||||
)
|
||||
expected_none = mx.array([1.29693, 1.38617, 1.48176])
|
||||
self.assertTrue(
|
||||
mx.allclose(expected_none, losses_none),
|
||||
"Test case failed for cross_entropy --label_smoothing=0.3 --reduction='none'",
|
||||
)
|
||||
|
||||
expected_mean = mx.mean(expected_none)
|
||||
losses_mean = nn.losses.cross_entropy(
|
||||
logits, target, label_smoothing=0.3, reduction="mean"
|
||||
)
|
||||
self.assertTrue(
|
||||
mx.allclose(losses_mean, expected_mean),
|
||||
"Test case failed for cross_entropy --label_smoothing=0.3 --reduction='mean'",
|
||||
)
|
||||
|
||||
expected_sum = mx.sum(expected_none)
|
||||
losses_sum = nn.losses.cross_entropy(
|
||||
logits, target, label_smoothing=0.3, reduction="sum"
|
||||
)
|
||||
self.assertTrue(
|
||||
mx.allclose(losses_sum, expected_sum),
|
||||
"Test case failed for cross_entropy --label_smoothing=0.3 --reduction='sum'",
|
||||
)
|
||||
|
||||
def test_l1_loss(self):
|
||||
predictions = mx.array([0.5, 0.2, 0.9, 0.0])
|
||||
targets = mx.array([0.5, 0.2, 0.9, 0.0])
|
||||
|
||||
# Expected result
|
||||
expected_none = mx.array([0, 0, 0, 0]).astype(mx.float32)
|
||||
expected_sum = mx.sum(expected_none)
|
||||
expected_mean = mx.mean(expected_none)
|
||||
|
||||
losses = nn.losses.l1_loss(predictions, targets, reduction="none")
|
||||
self.assertEqual(losses, 0.0)
|
||||
self.assertTrue(
|
||||
mx.array_equal(losses, expected_none),
|
||||
"Test failed for l1_loss --reduction='none'",
|
||||
)
|
||||
|
||||
losses = nn.losses.l1_loss(predictions, targets, reduction="sum")
|
||||
self.assertTrue(mx.array_equal(losses, expected_sum))
|
||||
|
||||
losses = nn.losses.l1_loss(predictions, targets, reduction="mean")
|
||||
self.assertTrue(mx.array_equal(losses, expected_mean))
|
||||
|
||||
def test_mse_loss(self):
|
||||
predictions = mx.array([0.5, 0.2, 0.9, 0.0])
|
||||
targets = mx.array([0.7, 0.1, 0.8, 0.2])
|
||||
|
||||
expected_none = mx.array([0.04, 0.01, 0.01, 0.04])
|
||||
expected_mean = mx.mean(expected_none)
|
||||
expected_sum = mx.sum(expected_none)
|
||||
|
||||
# Test with reduction 'none'
|
||||
losses_none = nn.losses.mse_loss(predictions, targets, reduction="none")
|
||||
expected_none = mx.array([0.04, 0.01, 0.01, 0.04])
|
||||
self.assertTrue(mx.allclose(losses_none, expected_none))
|
||||
self.assertTrue(
|
||||
np.allclose(losses_none, expected_none, 1e-5),
|
||||
"Test case failed for mse_loss --reduction='none'",
|
||||
)
|
||||
|
||||
# Test with reduction 'mean'
|
||||
losses_mean = nn.losses.mse_loss(predictions, targets, reduction="mean")
|
||||
expected_mean = mx.mean(expected_none)
|
||||
self.assertEqual(losses_mean, expected_mean)
|
||||
self.assertEqual(
|
||||
losses_mean,
|
||||
expected_mean,
|
||||
"Test case failed for mse_loss --reduction='mean'",
|
||||
)
|
||||
|
||||
# Test with reduction 'sum'
|
||||
losses_sum = nn.losses.mse_loss(predictions, targets, reduction="sum")
|
||||
self.assertEqual(
|
||||
losses_sum, expected_sum, "Test case failed for mse_loss --reduction='sum'"
|
||||
)
|
||||
|
||||
def test_smooth_l1_loss(self):
|
||||
predictions = mx.array([1.5, 2.5, 0.5, 3.5])
|
||||
targets = mx.array([1.0, 2.0, 0.5, 2.5])
|
||||
beta = 1.0
|
||||
|
||||
# Expected results
|
||||
expected_none = mx.array([0.125, 0.125, 0.0, 0.5])
|
||||
expected_sum = mx.sum(expected_none)
|
||||
self.assertEqual(losses_sum, expected_sum)
|
||||
expected_mean = mx.mean(expected_none)
|
||||
|
||||
# Test with reduction 'none'
|
||||
loss_none = nn.losses.smooth_l1_loss(
|
||||
predictions, targets, beta, reduction="none"
|
||||
)
|
||||
self.assertTrue(
|
||||
mx.array_equal(loss_none, expected_none),
|
||||
"Test case failed for smooth_l1_loss --reduction='none'",
|
||||
)
|
||||
|
||||
# Test with reduction 'sum'
|
||||
loss_sum = nn.losses.smooth_l1_loss(predictions, targets, beta, reduction="sum")
|
||||
self.assertEqual(
|
||||
loss_sum,
|
||||
expected_sum,
|
||||
"Test case failed for smooth_l1_loss --reduction='sum'",
|
||||
)
|
||||
|
||||
# Test with reduction 'mean'
|
||||
loss_mean = nn.losses.smooth_l1_loss(
|
||||
predictions, targets, beta, reduction="mean"
|
||||
)
|
||||
self.assertEqual(
|
||||
loss_mean,
|
||||
expected_mean,
|
||||
"Test case failed for smooth_l1_loss --reduction='mean'",
|
||||
)
|
||||
|
||||
def test_nll_loss(self):
|
||||
logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]])
|
||||
@@ -100,77 +239,6 @@ class TestNN(mlx_tests.MLXTestCase):
|
||||
expected_sum = mx.sum(expected_none)
|
||||
self.assertTrue(mx.allclose(losses_sum, expected_sum))
|
||||
|
||||
def test_binary_cross_entropy(self):
|
||||
inputs = mx.array([[0.5, 0.5, 0.2, 0.9], [0.1, 0.3, 0.5, 0.5]])
|
||||
targets = mx.array([[0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0]])
|
||||
|
||||
# Test with reduction 'none'
|
||||
losses_none = nn.losses.binary_cross_entropy(inputs, targets, reduction="none")
|
||||
expected_none = mx.array(
|
||||
[
|
||||
[
|
||||
0.6931471824645996,
|
||||
0.6931471824645996,
|
||||
0.2231435477733612,
|
||||
0.10536054521799088,
|
||||
],
|
||||
[
|
||||
2.3025851249694824,
|
||||
0.3566749691963196,
|
||||
0.6931471824645996,
|
||||
0.6931471824645996,
|
||||
],
|
||||
]
|
||||
)
|
||||
self.assertTrue(mx.allclose(losses_none, expected_none, rtol=1e-5, atol=1e-8))
|
||||
|
||||
# Test with reduction 'mean'
|
||||
losses_mean = nn.losses.binary_cross_entropy(inputs, targets, reduction="mean")
|
||||
expected_mean = mx.mean(expected_none)
|
||||
self.assertTrue(mx.allclose(losses_mean, expected_mean))
|
||||
|
||||
# Test with reduction 'sum'
|
||||
losses_sum = nn.losses.binary_cross_entropy(inputs, targets, reduction="sum")
|
||||
expected_sum = mx.sum(expected_none)
|
||||
self.assertTrue(mx.allclose(losses_sum, expected_sum))
|
||||
|
||||
def test_bce_loss_module(self):
|
||||
inputs = mx.array([[0.5, 0.5, 0.2, 0.9], [0.1, 0.3, 0.5, 0.5]])
|
||||
targets = mx.array([[0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0]])
|
||||
|
||||
# Test with reduction 'none'
|
||||
loss_module_none = nn.losses.BCELoss(reduction="none")
|
||||
losses_none = loss_module_none(inputs, targets)
|
||||
expected_none = mx.array(
|
||||
[
|
||||
[
|
||||
0.6931471824645996,
|
||||
0.6931471824645996,
|
||||
0.2231435477733612,
|
||||
0.10536054521799088,
|
||||
],
|
||||
[
|
||||
2.3025851249694824,
|
||||
0.3566749691963196,
|
||||
0.6931471824645996,
|
||||
0.6931471824645996,
|
||||
],
|
||||
]
|
||||
)
|
||||
self.assertTrue(mx.allclose(losses_none, expected_none, rtol=1e-5, atol=1e-8))
|
||||
|
||||
# Test with reduction 'mean'
|
||||
loss_module_mean = nn.losses.BCELoss(reduction="mean")
|
||||
losses_mean = loss_module_mean(inputs, targets)
|
||||
expected_mean = mx.mean(expected_none)
|
||||
self.assertTrue(mx.allclose(losses_mean, expected_mean))
|
||||
|
||||
# Test with reduction 'sum'
|
||||
loss_module_sum = nn.losses.BCELoss(reduction="sum")
|
||||
losses_sum = loss_module_sum(inputs, targets)
|
||||
expected_sum = mx.sum(expected_none)
|
||||
self.assertTrue(mx.allclose(losses_sum, expected_sum))
|
||||
|
||||
def test_gelu(self):
|
||||
inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]
|
||||
|
||||
|
Reference in New Issue
Block a user