Add smoothed L1 loss and enhancements to cross entropy loss (#166)

* Add smooth_l1_loss
* Add labels moothing for cross entropy loss

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
jojopuppet
2023-12-18 23:26:21 +08:00
committed by GitHub
parent 0e5807bbcb
commit 18cca64c81
3 changed files with 278 additions and 172 deletions

View File

@@ -37,30 +37,169 @@ class TestNN(mlx_tests.MLXTestCase):
expected_sum = mx.sum(expected_none)
self.assertEqual(losses_sum, expected_sum)
# Test cases with weights and no label smoothing
logits = mx.array([[2.0, -1.0], [-1.0, 2.0]])
targets = mx.array([0, 1])
weights = mx.array([1.0, 2.0])
# Reduction 'none'
losses_none = nn.losses.cross_entropy(
logits,
targets,
weights=weights,
reduction="none",
)
expected_none = mx.array([0.04858735, 0.0971747]) # Calculated losses
self.assertTrue(
np.allclose(losses_none, expected_none, atol=1e-5),
"Test case failed for cross_entropy loss --reduction='none' --weights=[1.0, 2.0]",
)
# Reduction 'mean'
losses_mean = nn.losses.cross_entropy(
logits,
targets,
weights=weights,
reduction="mean",
)
expected_mean = mx.mean(expected_none)
self.assertTrue(
np.allclose(losses_mean, expected_mean, atol=1e-5),
"Test case failed for cross_entropy loss --reduction='mean' --weights=[1.0, 2.0]",
)
# Reduction 'sum'
losses_sum = nn.losses.cross_entropy(
logits,
targets,
weights=weights,
reduction="sum",
)
expected_sum = mx.sum(expected_none)
self.assertTrue(
np.allclose(losses_sum, expected_sum, atol=1e-5),
"Test case failed for cross_entropy loss --reduction='sum' --weights=[1.0, 2.0]",
)
# Test case with equal weights and label smoothing > 0
logits = mx.array(
[[0, 0.2, 0.7, 0.1, 0], [0, 0.9, 0.2, 0.2, 1], [1, 0.2, 0.7, 0.9, 1]]
)
target = mx.array([2, 1, 0])
losses_none = nn.losses.cross_entropy(
logits, target, label_smoothing=0.3, reduction="none"
)
expected_none = mx.array([1.29693, 1.38617, 1.48176])
self.assertTrue(
mx.allclose(expected_none, losses_none),
"Test case failed for cross_entropy --label_smoothing=0.3 --reduction='none'",
)
expected_mean = mx.mean(expected_none)
losses_mean = nn.losses.cross_entropy(
logits, target, label_smoothing=0.3, reduction="mean"
)
self.assertTrue(
mx.allclose(losses_mean, expected_mean),
"Test case failed for cross_entropy --label_smoothing=0.3 --reduction='mean'",
)
expected_sum = mx.sum(expected_none)
losses_sum = nn.losses.cross_entropy(
logits, target, label_smoothing=0.3, reduction="sum"
)
self.assertTrue(
mx.allclose(losses_sum, expected_sum),
"Test case failed for cross_entropy --label_smoothing=0.3 --reduction='sum'",
)
def test_l1_loss(self):
predictions = mx.array([0.5, 0.2, 0.9, 0.0])
targets = mx.array([0.5, 0.2, 0.9, 0.0])
# Expected result
expected_none = mx.array([0, 0, 0, 0]).astype(mx.float32)
expected_sum = mx.sum(expected_none)
expected_mean = mx.mean(expected_none)
losses = nn.losses.l1_loss(predictions, targets, reduction="none")
self.assertEqual(losses, 0.0)
self.assertTrue(
mx.array_equal(losses, expected_none),
"Test failed for l1_loss --reduction='none'",
)
losses = nn.losses.l1_loss(predictions, targets, reduction="sum")
self.assertTrue(mx.array_equal(losses, expected_sum))
losses = nn.losses.l1_loss(predictions, targets, reduction="mean")
self.assertTrue(mx.array_equal(losses, expected_mean))
def test_mse_loss(self):
predictions = mx.array([0.5, 0.2, 0.9, 0.0])
targets = mx.array([0.7, 0.1, 0.8, 0.2])
expected_none = mx.array([0.04, 0.01, 0.01, 0.04])
expected_mean = mx.mean(expected_none)
expected_sum = mx.sum(expected_none)
# Test with reduction 'none'
losses_none = nn.losses.mse_loss(predictions, targets, reduction="none")
expected_none = mx.array([0.04, 0.01, 0.01, 0.04])
self.assertTrue(mx.allclose(losses_none, expected_none))
self.assertTrue(
np.allclose(losses_none, expected_none, 1e-5),
"Test case failed for mse_loss --reduction='none'",
)
# Test with reduction 'mean'
losses_mean = nn.losses.mse_loss(predictions, targets, reduction="mean")
expected_mean = mx.mean(expected_none)
self.assertEqual(losses_mean, expected_mean)
self.assertEqual(
losses_mean,
expected_mean,
"Test case failed for mse_loss --reduction='mean'",
)
# Test with reduction 'sum'
losses_sum = nn.losses.mse_loss(predictions, targets, reduction="sum")
self.assertEqual(
losses_sum, expected_sum, "Test case failed for mse_loss --reduction='sum'"
)
def test_smooth_l1_loss(self):
predictions = mx.array([1.5, 2.5, 0.5, 3.5])
targets = mx.array([1.0, 2.0, 0.5, 2.5])
beta = 1.0
# Expected results
expected_none = mx.array([0.125, 0.125, 0.0, 0.5])
expected_sum = mx.sum(expected_none)
self.assertEqual(losses_sum, expected_sum)
expected_mean = mx.mean(expected_none)
# Test with reduction 'none'
loss_none = nn.losses.smooth_l1_loss(
predictions, targets, beta, reduction="none"
)
self.assertTrue(
mx.array_equal(loss_none, expected_none),
"Test case failed for smooth_l1_loss --reduction='none'",
)
# Test with reduction 'sum'
loss_sum = nn.losses.smooth_l1_loss(predictions, targets, beta, reduction="sum")
self.assertEqual(
loss_sum,
expected_sum,
"Test case failed for smooth_l1_loss --reduction='sum'",
)
# Test with reduction 'mean'
loss_mean = nn.losses.smooth_l1_loss(
predictions, targets, beta, reduction="mean"
)
self.assertEqual(
loss_mean,
expected_mean,
"Test case failed for smooth_l1_loss --reduction='mean'",
)
def test_nll_loss(self):
logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]])
@@ -100,77 +239,6 @@ class TestNN(mlx_tests.MLXTestCase):
expected_sum = mx.sum(expected_none)
self.assertTrue(mx.allclose(losses_sum, expected_sum))
def test_binary_cross_entropy(self):
inputs = mx.array([[0.5, 0.5, 0.2, 0.9], [0.1, 0.3, 0.5, 0.5]])
targets = mx.array([[0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0]])
# Test with reduction 'none'
losses_none = nn.losses.binary_cross_entropy(inputs, targets, reduction="none")
expected_none = mx.array(
[
[
0.6931471824645996,
0.6931471824645996,
0.2231435477733612,
0.10536054521799088,
],
[
2.3025851249694824,
0.3566749691963196,
0.6931471824645996,
0.6931471824645996,
],
]
)
self.assertTrue(mx.allclose(losses_none, expected_none, rtol=1e-5, atol=1e-8))
# Test with reduction 'mean'
losses_mean = nn.losses.binary_cross_entropy(inputs, targets, reduction="mean")
expected_mean = mx.mean(expected_none)
self.assertTrue(mx.allclose(losses_mean, expected_mean))
# Test with reduction 'sum'
losses_sum = nn.losses.binary_cross_entropy(inputs, targets, reduction="sum")
expected_sum = mx.sum(expected_none)
self.assertTrue(mx.allclose(losses_sum, expected_sum))
def test_bce_loss_module(self):
inputs = mx.array([[0.5, 0.5, 0.2, 0.9], [0.1, 0.3, 0.5, 0.5]])
targets = mx.array([[0.0, 1.0, 0.0, 1.0], [1.0, 0.0, 1.0, 0.0]])
# Test with reduction 'none'
loss_module_none = nn.losses.BCELoss(reduction="none")
losses_none = loss_module_none(inputs, targets)
expected_none = mx.array(
[
[
0.6931471824645996,
0.6931471824645996,
0.2231435477733612,
0.10536054521799088,
],
[
2.3025851249694824,
0.3566749691963196,
0.6931471824645996,
0.6931471824645996,
],
]
)
self.assertTrue(mx.allclose(losses_none, expected_none, rtol=1e-5, atol=1e-8))
# Test with reduction 'mean'
loss_module_mean = nn.losses.BCELoss(reduction="mean")
losses_mean = loss_module_mean(inputs, targets)
expected_mean = mx.mean(expected_none)
self.assertTrue(mx.allclose(losses_mean, expected_mean))
# Test with reduction 'sum'
loss_module_sum = nn.losses.BCELoss(reduction="sum")
losses_sum = loss_module_sum(inputs, targets)
expected_sum = mx.sum(expected_none)
self.assertTrue(mx.allclose(losses_sum, expected_sum))
def test_gelu(self):
inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]