change after all tests

This commit is contained in:
Jyun1998 2024-01-02 02:51:40 +09:00
parent 80b4d84d90
commit 19bc6a391a
2 changed files with 5 additions and 122 deletions

View File

@ -259,8 +259,8 @@ def dice_loss(inputs: mx.array, targets: mx.array, eps: float = 1e-6, reduction:
Returns: Returns:
mx.array: The computed Dice loss. mx.array: The computed Dice loss.
""" """
intersection = mx.sum(inputs * targets, axis=-1) intersection = mx.sum(inputs * targets, axis=1) # Sum over the feature dimension
union = mx.sum(inputs, axis=-1) + mx.sum(targets, axis=-1) - intersection union = mx.sum(inputs, axis=1) + mx.sum(targets, axis=1)
dice_score = (2. * intersection + eps) / (union + eps) dice_score = (2. * intersection + eps) / (union + eps)
loss = 1 - dice_score loss = 1 - dice_score
return _reduce(loss, reduction) return _reduce(loss, reduction)
@ -280,10 +280,10 @@ def focal_loss(inputs: mx.array, targets: mx.array, alpha: float = 0.25, gamma:
Returns: Returns:
mx.array: The computed Focal loss. mx.array: The computed Focal loss.
""" """
BCE_loss = binary_cross_entropy(inputs, targets, reduction) BCE_loss = binary_cross_entropy(inputs, targets)
pt = mx.exp(-BCE_loss) pt = mx.exp(-BCE_loss)
loss = alpha * (1 - pt) ** gamma * BCE_loss loss = alpha * (1 - pt) ** gamma * BCE_loss
return loss return _reduce(loss, reduction)
def contrastive_loss(embeddings1: mx.array, embeddings2: mx.array, targets: mx.array, margin: float = 1.0, reduction: str = "none") -> mx.array: def contrastive_loss(embeddings1: mx.array, embeddings2: mx.array, targets: mx.array, margin: float = 1.0, reduction: str = "none") -> mx.array:
@ -327,55 +327,3 @@ def cosine_similarity_loss(embeddings1: mx.array, embeddings2: mx.array, targets
cos_similarity = mx.sum(embeddings1 * embeddings2, axis=1) / (embeddings1_norm * embeddings2_norm) cos_similarity = mx.sum(embeddings1 * embeddings2, axis=1) / (embeddings1_norm * embeddings2_norm)
loss = mx.where(targets == 1, 1 - cos_similarity, mx.maximum(0, cos_similarity - margin)) loss = mx.where(targets == 1, 1 - cos_similarity, mx.maximum(0, cos_similarity - margin))
return _reduce(loss, reduction) return _reduce(loss, reduction)
def test_losses():
# Hinge Loss Test
predictions = mx.array([0.8, -1.5])
targets = mx.array([1, -1])
print("Hinge Loss:", hinge_loss(predictions, targets))
# Expected Result: [0.2, 0] v
# Huber Loss Test
predictions = mx.array([1.5, 0.5])
targets = mx.array([1, 0])
delta = 1.0
print("Huber Loss:", huber_loss(predictions, targets, delta))
# Expected Result: [0.125, 0.125] v
# Dice Loss Test
inputs = mx.array([0.7, 0.3])
targets = mx.array([1, 0])
print("Dice Loss:", dice_loss(inputs, targets))
# Expected Result: [0.42857143] ([0.1765, 1.0000])
# Focal Loss Test
inputs = mx.array([0.9, 0.1])
targets = mx.array([1, 0])
alpha = 0.25
gamma = 2.0
print("Focal Loss:", focal_loss(inputs, targets, alpha, gamma))
# Expected Result: [0.002025, 0.2304]
# Contrastive Loss Test
embeddings1 = mx.array([[1, 2], [3, 4]])
embeddings2 = mx.array([[2, 3], [4, 5]])
targets = mx.array([1, 0])
margin = 1.0
print("Contrastive Loss:", contrastive_loss(embeddings1, embeddings2, targets, margin))
# Expected Result: [1.4142135, 0.0] v
# Cosine Similarity Loss Test
embeddings1 = mx.array([[1, 0], [0, 1]])
embeddings2 = mx.array([[0, 1], [1, 0]])
targets = mx.array([1, -1])
print("Cosine Similarity Loss:", cosine_similarity_loss(embeddings1, embeddings2, targets))
# Expected Result: [1, 0]
# Run the tests
test_losses()
# Hinge Loss: tensor(0.1000)
# Huber Loss: tensor([0.1250, 0.1250])
# Dice Loss: tensor([0.1765, 1.0000])
# Focal Loss: tensor([0.0003, 0.0003])
# Contrastive Loss: tensor([0.7071, 0.0000])
# Cosine Similarity Loss: tensor([1., 0.])

View File

@ -1,65 +0,0 @@
import torch
import torch.nn.functional as F
import torch
import torch.nn as nn
import torch.nn.functional as F
# Hinge Loss (Custom)
class HingeLoss(nn.Module):
def forward(self, predictions, targets):
return torch.mean(torch.clamp(1 - predictions * targets, min=0))
# Dice Loss (Custom)
class DiceLoss(nn.Module):
def forward(self, inputs, targets, epsilon=1e-6):
intersection = inputs * targets
union = inputs + targets
dice_score = (2. * intersection + epsilon) / (union + epsilon)
return 1 - dice_score
def focal_loss(inputs, targets, alpha=0.25, gamma=2.0):
BCE_loss = F.binary_cross_entropy(inputs, targets, reduction='none')
pt = torch.exp(-BCE_loss)
F_loss = alpha * (1 - pt) ** gamma * BCE_loss
return F_loss
def contrastive_loss(embeddings1, embeddings2, targets, margin=1.0):
distances = F.pairwise_distance(embeddings1, embeddings2)
loss = 0.5 * (targets * distances + (1 - targets) * F.relu(margin - distances))
return loss
# Test cases
def test_losses():
hinge_loss = HingeLoss()
huber_loss = nn.SmoothL1Loss(reduction='none')
dice_loss = DiceLoss()
cosine_similarity_loss = nn.CosineEmbeddingLoss(reduction='none')
predictions = torch.tensor([0.8, -1.5])
targets = torch.tensor([1, -1])
print("Hinge Loss:", hinge_loss(predictions, targets))
predictions = torch.tensor([1.5, 0.5])
targets = torch.tensor([1, 0])
print("Huber Loss:", huber_loss(predictions, targets))
inputs = torch.tensor([0.7, 0.3])
targets = torch.tensor([1, 0])
print("Dice Loss:", dice_loss(inputs, targets))
inputs = torch.tensor([0.9, 0.1], dtype=torch.float32)
targets = torch.tensor([1, 0], dtype=torch.float32)
print("Focal Loss:", focal_loss(inputs, targets))
embeddings1 = torch.tensor([[1, 2], [3, 4]], dtype=torch.float)
embeddings2 = torch.tensor([[2, 3], [4, 5]], dtype=torch.float)
targets = torch.tensor([1, 0], dtype=torch.float)
print("Contrastive Loss:", contrastive_loss(embeddings1, embeddings2, targets))
embeddings1 = torch.tensor([[1, 0], [0, 1]], dtype=torch.float)
embeddings2 = torch.tensor([[0, 1], [1, 0]], dtype=torch.float)
targets = torch.tensor([1, -1], dtype=torch.float)
print("Cosine Similarity Loss:", cosine_similarity_loss(embeddings1, embeddings2, targets))
test_losses()