mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Complex scan (#2094)
This commit is contained in:
@@ -172,9 +172,12 @@ void binary_float(
|
||||
case bfloat16:
|
||||
binary_op<bfloat16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case complex64:
|
||||
binary_op<complex64_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"[binary_float] Only supports non-complex floating point types.");
|
||||
"[binary_float] Only supports floating point types.");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
@@ -330,7 +330,8 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
reduce_type_, in, out, axis_, reverse_, inclusive_);
|
||||
break;
|
||||
case complex64:
|
||||
throw std::runtime_error("Scan ops do not support complex types yet");
|
||||
scan_dispatch<complex64_t, complex64_t>(
|
||||
reduce_type_, in, out, axis_, reverse_, inclusive_);
|
||||
break;
|
||||
}
|
||||
});
|
||||
|
||||
@@ -88,12 +88,33 @@ DEFAULT_UNARY(expm1, std::expm1)
|
||||
DEFAULT_UNARY(floor, std::floor)
|
||||
DEFAULT_UNARY(log, std::log)
|
||||
DEFAULT_UNARY(log10, std::log10)
|
||||
DEFAULT_UNARY(log1p, std::log1p)
|
||||
DEFAULT_UNARY(sinh, std::sinh)
|
||||
DEFAULT_UNARY(sqrt, std::sqrt)
|
||||
DEFAULT_UNARY(tan, std::tan)
|
||||
DEFAULT_UNARY(tanh, std::tanh)
|
||||
|
||||
template <typename T>
|
||||
Simd<T, 1> log1p(Simd<T, 1> in) {
|
||||
if constexpr (is_complex<T>) {
|
||||
auto x = in.value.real();
|
||||
auto y = in.value.imag();
|
||||
auto zabs = std::abs(in.value);
|
||||
auto theta = std::atan2(y, x + 1);
|
||||
if (zabs < 0.5) {
|
||||
auto r = x * (2 + x) + y * y;
|
||||
if (r == 0) { // handle underflow
|
||||
return Simd<T, 1>{T{x, theta}};
|
||||
}
|
||||
return Simd<T, 1>{T{((typeof(x))(0.5)) * std::log1p(r), theta}};
|
||||
} else {
|
||||
auto z0 = std::hypot(x + 1, y);
|
||||
return Simd<T, 1>{T{std::log(z0), theta}};
|
||||
}
|
||||
} else {
|
||||
return Simd<T, 1>{std::log1p(in.value)};
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Simd<T, 1> log2(Simd<T, 1> in) {
|
||||
if constexpr (is_complex<T>) {
|
||||
|
||||
@@ -71,6 +71,7 @@ instantiate_binary_types_bool(Less)
|
||||
instantiate_binary_types_bool(LessEqual)
|
||||
instantiate_binary_types_bool(NotEqual)
|
||||
instantiate_binary_float(LogAddExp)
|
||||
instantiate_binary_all(LogAddExp, complex64, complex64_t, complex64_t)
|
||||
instantiate_binary_types(Maximum)
|
||||
instantiate_binary_types(Minimum)
|
||||
instantiate_binary_types(Multiply)
|
||||
|
||||
@@ -130,6 +130,24 @@ struct LogAddExp {
|
||||
? maxval
|
||||
: (maxval + log1p(metal::exp(minval - maxval)));
|
||||
};
|
||||
|
||||
complex64_t operator()(complex64_t x, complex64_t y) {
|
||||
if (metal::isnan(x.real) || metal::isnan(x.imag) || metal::isnan(y.real) ||
|
||||
metal::isnan(y.imag)) {
|
||||
return metal::numeric_limits<float>::quiet_NaN();
|
||||
}
|
||||
constexpr float inf = metal::numeric_limits<float>::infinity();
|
||||
complex64_t maxval = x > y ? x : y;
|
||||
complex64_t minval = x < y ? x : y;
|
||||
if (minval.real == -inf || maxval.real == inf)
|
||||
return maxval;
|
||||
float m = metal::exp(minval.real - maxval.real);
|
||||
complex64_t dexp{
|
||||
m * metal::cos(minval.imag - maxval.imag),
|
||||
m * metal::sin(minval.imag - maxval.imag),
|
||||
};
|
||||
return maxval + log1p(dexp);
|
||||
}
|
||||
};
|
||||
|
||||
struct Maximum {
|
||||
|
||||
@@ -104,4 +104,5 @@ instantiate_scan_helper(min_bfloat16_bfloat16, bfloat16_t, bfloat16_t, CumMi
|
||||
instantiate_scan_helper(min_complex64_complex64, complex64_t, complex64_t, CumMin, 2)
|
||||
instantiate_scan_helper(logaddexp_float16_float16, half, half, CumLogaddexp, 4)
|
||||
instantiate_scan_helper(logaddexp_float32_float32, float, float, CumLogaddexp, 4)
|
||||
instantiate_scan_helper(logaddexp_bfloat16_bfloat16, bfloat16_t, bfloat16_t, CumLogaddexp, 4) // clang-format on
|
||||
instantiate_scan_helper(logaddexp_bfloat16_bfloat16, bfloat16_t, bfloat16_t, CumLogaddexp, 4)
|
||||
instantiate_scan_helper(logaddexp_complex64_complex64, complex64_t, complex64_t, CumLogaddexp, 2) // clang-format on
|
||||
|
||||
@@ -77,6 +77,7 @@ instantiate_unary_all_same(Cos, complex64, complex64_t)
|
||||
instantiate_unary_all_same(Cosh, complex64, complex64_t)
|
||||
instantiate_unary_all_same(Exp, complex64, complex64_t)
|
||||
instantiate_unary_all_same(Log, complex64, complex64_t)
|
||||
instantiate_unary_all_same(Log1p, complex64, complex64_t)
|
||||
instantiate_unary_all_same(Log2, complex64, complex64_t)
|
||||
instantiate_unary_all_same(Log10, complex64, complex64_t)
|
||||
instantiate_unary_all_same(Negative, complex64, complex64_t)
|
||||
|
||||
@@ -328,6 +328,23 @@ inline bfloat16_t log1p(bfloat16_t x) {
|
||||
return bfloat16_t(x * (metal::log(xp1) / (xp1 - 1.0f)));
|
||||
}
|
||||
|
||||
inline complex64_t log1p(complex64_t in) {
|
||||
float x = in.real;
|
||||
float y = in.imag;
|
||||
float zabs = metal::precise::sqrt(x * x + y * y);
|
||||
float theta = metal::atan2(y, x + 1);
|
||||
if (zabs < 0.5f) {
|
||||
float r = x * (2 + x) + y * y;
|
||||
if (r == 0) { // handle underflow
|
||||
return {x, theta};
|
||||
}
|
||||
return {0.5f * log1p(r), theta};
|
||||
} else {
|
||||
auto z0 = metal::sqrt((x + 1) * (x + 1) + y * y);
|
||||
return {metal::log(z0), theta};
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// SIMD shuffle ops
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
Reference in New Issue
Block a user