Faster indexing math in a few kernels (#1589)

* wip: faster compiled kernels

* faster general unary with uint specialization

* index type in compiled, unary, binary, ternary, copy

* fix jit

* jit fix

* specialize gather + scatter

* nit in docs
This commit is contained in:
Awni Hannun
2024-11-18 19:52:00 -08:00
committed by GitHub
parent bf481e8e5d
commit 2419edd5b2
25 changed files with 630 additions and 484 deletions

View File

@@ -184,8 +184,8 @@ Let's time these two different versions:
print(timeit.timeit(lambda: mx.eval(naive_add(xs, ys)), number=100))
print(timeit.timeit(lambda: mx.eval(vmap_add(xs, ys)), number=100))
On an M1 Max the naive version takes in total ``0.390`` seconds whereas the
vectorized version takes only ``0.025`` seconds, more than ten times faster.
On an M1 Max the naive version takes in total ``5.639`` seconds whereas the
vectorized version takes only ``0.024`` seconds, more than 200 times faster.
Of course, this operation is quite contrived. A better approach is to simply do
``xs + ys.T``, but for more complex functions :func:`vmap` can be quite handy.