mirror of
https://github.com/ml-explore/mlx.git
synced 2025-08-29 18:26:41 +08:00
fix
This commit is contained in:
parent
80868ee4fb
commit
27e31ab249
@ -840,14 +840,15 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& w_pre = inputs[1];
|
||||
auto& scales_pre = inputs[2];
|
||||
|
||||
std::vector<array> temps;
|
||||
auto ensure_row_contiguous = [s = stream(), &temps](const array& arr) {
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
auto ensure_row_contiguous = [s = stream(), &encoder](const array& arr) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return arr;
|
||||
} else {
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
||||
return temps.back();
|
||||
auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_cpy, CopyType::General, s);
|
||||
encoder.add_temporary(arr_cpy);
|
||||
return arr_cpy;
|
||||
}
|
||||
};
|
||||
|
||||
@ -857,8 +858,6 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_input_array(scales);
|
||||
@ -894,17 +893,18 @@ void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& lhs_indices = inputs[inputs.size() - 2];
|
||||
auto& rhs_indices = inputs[inputs.size() - 1];
|
||||
|
||||
std::vector<array> temps;
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
auto ensure_row_contiguous_last_dims = [s = stream(),
|
||||
&temps](const array& arr) {
|
||||
&encoder](const array& arr) {
|
||||
auto stride_0 = arr.strides()[arr.ndim() - 2];
|
||||
auto stride_1 = arr.strides()[arr.ndim() - 1];
|
||||
if (stride_0 == arr.shape(-1) && stride_1 == 1) {
|
||||
return arr;
|
||||
} else {
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
||||
return temps.back();
|
||||
auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_cpy, CopyType::General, s);
|
||||
encoder.add_temporary(arr_cpy);
|
||||
return arr_cpy;
|
||||
}
|
||||
};
|
||||
|
||||
@ -914,8 +914,6 @@ void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_input_array(scales);
|
||||
|
@ -4206,7 +4206,8 @@ void init_ops(nb::module_& m) {
|
||||
``quantize`` currently only supports 2D inputs with the second
|
||||
dimension divisible by ``group_size``
|
||||
|
||||
The supported quantization modes are described in more detail below.
|
||||
The supported quantization modes are ``"affine"`` and ``"mxfp4"``. They
|
||||
are described in more detail below.
|
||||
|
||||
Args:
|
||||
w (array): Matrix to be quantized
|
||||
@ -4221,13 +4222,12 @@ void init_ops(nb::module_& m) {
|
||||
|
||||
* w_q (array): The quantized version of ``w``
|
||||
* scales (array): The quantization scales
|
||||
* biases (array): The quantization biases (returned for `mode=="affine"`).
|
||||
* biases (array): The quantization biases (returned for ``mode=="affine"``).
|
||||
|
||||
Notes:
|
||||
The currently supported quantization mode is `"affine"`.
|
||||
Formally, for a group of :math:`g` consecutive elements :math:`w_1` to
|
||||
:math:`w_g` in a row of ``w`` we compute the quantized representation
|
||||
of each element :math:`\hat{w_i}` as follows
|
||||
The ``affine`` mode quantizes groups of :math:`g` consecutive
|
||||
elements in a row of ``w``. For each group the quantized
|
||||
representation of each element :math:`\hat{w_i}` is computed as follows:
|
||||
|
||||
.. math::
|
||||
|
||||
@ -4244,9 +4244,16 @@ void init_ops(nb::module_& m) {
|
||||
unsigned 32 bit integer where the 1st element occupies the 4 least
|
||||
significant bits, the 2nd bits 4-7 etc.
|
||||
|
||||
In order to be able to dequantize the elements of ``w`` we also need to
|
||||
save :math:`s` and :math:`\beta` which are the returned ``scales`` and
|
||||
``biases`` respectively.
|
||||
To dequantize the elements of ``w``, we also save :math:`s` and
|
||||
:math:`\beta` which are the returned ``scales`` and
|
||||
``biases`` respectively.
|
||||
|
||||
The ``mxfp4`` mode similarly quantizes groups of :math:`g` elements
|
||||
of ``w``. For ``mxfp4`` the group size must be ``32``. The elements
|
||||
are quantized to 4-bit precision floating-point values (E2M1) with a
|
||||
shared 8-bit scale per group. Unlike ``affine`` quantization,
|
||||
``mxfp4`` does not have a bias value. More details on the format can
|
||||
be found in the `specification <https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf>`_.
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"dequantize",
|
||||
@ -4264,11 +4271,9 @@ void init_ops(nb::module_& m) {
|
||||
R"pbdoc(
|
||||
Dequantize the matrix ``w`` using quantization parameters.
|
||||
|
||||
The supported quantization modes are described in more detail below.
|
||||
|
||||
Args:
|
||||
w (array): Matrix to be quantized
|
||||
scales (array): The scales to use per ``group_size`` elements of ``w``
|
||||
w (array): Matrix to be dequantized
|
||||
scales (array): The scales to use per ``group_size`` elements of ``w``.
|
||||
biases (array, optional): The biases to use per ``group_size``
|
||||
elements of ``w``. Default: ``None``.
|
||||
group_size (int, optional): The size of the group in ``w`` that shares a
|
||||
@ -4281,10 +4286,11 @@ void init_ops(nb::module_& m) {
|
||||
array: The dequantized version of ``w``
|
||||
|
||||
Notes:
|
||||
The currently supported quantization mode is `"affine"`.
|
||||
Formally, given the notation in :func:`quantize`, we compute
|
||||
:math:`w_i` from :math:`\hat{w_i}` and corresponding :math:`s` and
|
||||
:math:`\beta` as follows
|
||||
The currently supported quantization modes are ``"affine"`` and ``mxfp4``.
|
||||
|
||||
For ``affine`` quantization, given the notation in :func:`quantize`,
|
||||
we compute :math:`w_i` from :math:`\hat{w_i}` and corresponding :math:`s`
|
||||
and :math:`\beta` as follows
|
||||
|
||||
.. math::
|
||||
|
||||
|
@ -2996,7 +2996,10 @@ TEST_CASE("test quantize dequantize") {
|
||||
|
||||
for (int i = 2; i <= 8; i *= 2) {
|
||||
int el_per_int = 32 / i;
|
||||
auto [x_q, scales, biases] = quantize(x, 128, i);
|
||||
auto res = quantize(x, 128, i);
|
||||
auto x_q = res[0];
|
||||
auto scales = res[1];
|
||||
auto biases = res[2];
|
||||
CHECK_EQ(x_q.shape(), Shape{128, 512 / el_per_int});
|
||||
CHECK_EQ(scales.shape(), Shape{128, 4});
|
||||
CHECK_EQ(biases.shape(), Shape{128, 4});
|
||||
|
Loading…
Reference in New Issue
Block a user