mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-28 21:21:21 +08:00
Some fixes to typing (#1371)
* some fixes to typing * fix module reference * comment
This commit is contained in:
parent
bd47e1f066
commit
291cf40aca
@ -234,7 +234,7 @@ def glorot_uniform(
|
||||
|
||||
def he_normal(
|
||||
dtype: mx.Dtype = mx.float32,
|
||||
) -> Callable[[mx.array, str, float], mx.array]:
|
||||
) -> Callable[[mx.array, Literal["fan_in", "fan_out"], float], mx.array]:
|
||||
r"""Build a He normal initializer.
|
||||
|
||||
This initializer samples from a normal distribution with a standard
|
||||
@ -292,7 +292,7 @@ def he_normal(
|
||||
|
||||
def he_uniform(
|
||||
dtype: mx.Dtype = mx.float32,
|
||||
) -> Callable[[mx.array, str, float], mx.array]:
|
||||
) -> Callable[[mx.array, Literal["fan_in", "fan_out"], float], mx.array]:
|
||||
r"""A He uniform (Kaiming uniform) initializer.
|
||||
|
||||
This initializer samples from a uniform distribution with a range
|
||||
|
@ -1,5 +1,7 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import textwrap
|
||||
from typing import Any, Callable, List, Optional, Tuple, Union
|
||||
|
||||
@ -7,42 +9,6 @@ import mlx.core as mx
|
||||
from mlx.utils import tree_flatten, tree_unflatten
|
||||
|
||||
|
||||
def _unwrap(model, value_key, value, filter_fn, map_fn, is_leaf_fn):
|
||||
if is_leaf_fn(model, value_key, value):
|
||||
return map_fn(value)
|
||||
|
||||
elif isinstance(value, Module):
|
||||
return {
|
||||
k: _unwrap(value, k, v, filter_fn, map_fn, is_leaf_fn)
|
||||
for k, v in value.items()
|
||||
if filter_fn(value, k, v)
|
||||
}
|
||||
|
||||
elif isinstance(value, dict):
|
||||
nd = {}
|
||||
for k, v in value.items():
|
||||
tk = f"{value_key}.{k}"
|
||||
nd[k] = (
|
||||
_unwrap(model, tk, v, filter_fn, map_fn, is_leaf_fn)
|
||||
if filter_fn(model, tk, v)
|
||||
else {}
|
||||
)
|
||||
return nd
|
||||
|
||||
elif isinstance(value, list):
|
||||
nl = []
|
||||
for i, vi in enumerate(value):
|
||||
tk = f"{value_key}.{i}"
|
||||
nl.append(
|
||||
_unwrap(model, tk, vi, filter_fn, map_fn, is_leaf_fn)
|
||||
if filter_fn(model, tk, vi)
|
||||
else {}
|
||||
)
|
||||
return nl
|
||||
|
||||
raise RuntimeError("Unexpected leaf found while traversing the module")
|
||||
|
||||
|
||||
class Module(dict):
|
||||
"""Base class for building neural networks with MLX.
|
||||
|
||||
@ -151,7 +117,7 @@ class Module(dict):
|
||||
self,
|
||||
file_or_weights: Union[str, List[Tuple[str, mx.array]]],
|
||||
strict: bool = True,
|
||||
) -> "Module":
|
||||
) -> Module:
|
||||
"""
|
||||
Update the model's weights from a ``.npz``, a ``.safetensors`` file, or a list.
|
||||
|
||||
@ -266,9 +232,9 @@ class Module(dict):
|
||||
|
||||
def filter_and_map(
|
||||
self,
|
||||
filter_fn: Callable[["mlx.nn.Module", str, Any], bool],
|
||||
filter_fn: Callable[[Module, str, Any], bool],
|
||||
map_fn: Optional[Callable] = None,
|
||||
is_leaf_fn: Optional[Callable[["mlx.nn.Module", str, Any], bool]] = None,
|
||||
is_leaf_fn: Optional[Callable[[Module, str, Any], bool]] = None,
|
||||
):
|
||||
"""Recursively filter the contents of the module using ``filter_fn``,
|
||||
namely only select keys and values where ``filter_fn`` returns true.
|
||||
@ -323,7 +289,7 @@ class Module(dict):
|
||||
|
||||
return self.filter_and_map(self.valid_child_filter, is_leaf_fn=_is_leaf_module)
|
||||
|
||||
def update(self, parameters: dict) -> "Module":
|
||||
def update(self, parameters: dict) -> Module:
|
||||
"""Replace the parameters of this Module with the provided ones in the
|
||||
dict of dicts and lists.
|
||||
|
||||
@ -371,8 +337,8 @@ class Module(dict):
|
||||
def apply(
|
||||
self,
|
||||
map_fn: Callable[[mx.array], mx.array],
|
||||
filter_fn: Optional[Callable[["mlx.nn.Module", str, Any], bool]] = None,
|
||||
) -> "Module":
|
||||
filter_fn: Optional[Callable[[Module, str, Any], bool]] = None,
|
||||
) -> Module:
|
||||
"""Map all the parameters using the provided ``map_fn`` and immediately
|
||||
update the module with the mapped parameters.
|
||||
|
||||
@ -391,7 +357,7 @@ class Module(dict):
|
||||
self.update(self.filter_and_map(filter_fn, map_fn))
|
||||
return self
|
||||
|
||||
def update_modules(self, modules: dict) -> "Module":
|
||||
def update_modules(self, modules: dict) -> Module:
|
||||
"""Replace the child modules of this :class:`Module` instance with the
|
||||
provided ones in the dict of dicts and lists.
|
||||
|
||||
@ -432,9 +398,7 @@ class Module(dict):
|
||||
apply(self, modules)
|
||||
return self
|
||||
|
||||
def apply_to_modules(
|
||||
self, apply_fn: Callable[[str, "mlx.nn.Module"], Any]
|
||||
) -> "Module":
|
||||
def apply_to_modules(self, apply_fn: Callable[[str, Module], Any]) -> Module:
|
||||
"""Apply a function to all the modules in this instance (including this
|
||||
instance).
|
||||
|
||||
@ -489,7 +453,7 @@ class Module(dict):
|
||||
recurse: bool = True,
|
||||
keys: Optional[Union[str, List[str]]] = None,
|
||||
strict: bool = False,
|
||||
) -> "Module":
|
||||
) -> Module:
|
||||
"""Freeze the Module's parameters or some of them. Freezing a parameter means not
|
||||
computing gradients for it.
|
||||
|
||||
@ -544,7 +508,7 @@ class Module(dict):
|
||||
recurse: bool = True,
|
||||
keys: Optional[Union[str, List[str]]] = None,
|
||||
strict: bool = False,
|
||||
) -> "Module":
|
||||
) -> Module:
|
||||
"""Unfreeze the Module's parameters or some of them.
|
||||
|
||||
This function is idempotent ie unfreezing a model that is not frozen is
|
||||
@ -588,7 +552,7 @@ class Module(dict):
|
||||
_unfreeze_impl("", self)
|
||||
return self
|
||||
|
||||
def train(self, mode: bool = True) -> "Module":
|
||||
def train(self, mode: bool = True) -> Module:
|
||||
"""Set the model in or out of training mode.
|
||||
|
||||
Training mode only applies to certain layers. For example
|
||||
@ -608,7 +572,7 @@ class Module(dict):
|
||||
self.apply_to_modules(_set_train)
|
||||
return self
|
||||
|
||||
def eval(self) -> "Module":
|
||||
def eval(self) -> Module:
|
||||
"""Set the model to evaluation mode.
|
||||
|
||||
See :func:`train`.
|
||||
@ -637,3 +601,39 @@ class Module(dict):
|
||||
return True
|
||||
|
||||
self.apply(lambda x: x.astype(dtype) if predicate(x.dtype) else x)
|
||||
|
||||
|
||||
def _unwrap(model, value_key, value, filter_fn, map_fn, is_leaf_fn):
|
||||
if is_leaf_fn(model, value_key, value):
|
||||
return map_fn(value)
|
||||
|
||||
elif isinstance(value, Module):
|
||||
return {
|
||||
k: _unwrap(value, k, v, filter_fn, map_fn, is_leaf_fn)
|
||||
for k, v in value.items()
|
||||
if filter_fn(value, k, v)
|
||||
}
|
||||
|
||||
elif isinstance(value, dict):
|
||||
nd = {}
|
||||
for k, v in value.items():
|
||||
tk = f"{value_key}.{k}"
|
||||
nd[k] = (
|
||||
_unwrap(model, tk, v, filter_fn, map_fn, is_leaf_fn)
|
||||
if filter_fn(model, tk, v)
|
||||
else {}
|
||||
)
|
||||
return nd
|
||||
|
||||
elif isinstance(value, list):
|
||||
nl = []
|
||||
for i, vi in enumerate(value):
|
||||
tk = f"{value_key}.{i}"
|
||||
nl.append(
|
||||
_unwrap(model, tk, vi, filter_fn, map_fn, is_leaf_fn)
|
||||
if filter_fn(model, tk, vi)
|
||||
else {}
|
||||
)
|
||||
return nl
|
||||
|
||||
raise RuntimeError("Unexpected leaf found while traversing the module")
|
||||
|
@ -190,9 +190,9 @@ class MaxPool1d(_Pool1d):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
kernel_size: Union[int, Tuple[int, int]],
|
||||
stride: Optional[Union[int, Tuple[int, int]]] = None,
|
||||
padding: Optional[Union[int, Tuple[int, int]]] = 0,
|
||||
kernel_size: Union[int, Tuple[int]],
|
||||
stride: Optional[Union[int, Tuple[int]]] = None,
|
||||
padding: Union[int, Tuple[int]] = 0,
|
||||
):
|
||||
super().__init__(mx.max, -float("inf"), kernel_size, stride, padding)
|
||||
|
||||
@ -229,9 +229,9 @@ class AvgPool1d(_Pool1d):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
kernel_size: Union[int, Tuple[int, int]],
|
||||
stride: Optional[Union[int, Tuple[int, int]]] = None,
|
||||
padding: Optional[Union[int, Tuple[int, int]]] = 0,
|
||||
kernel_size: Union[int, Tuple[int]],
|
||||
stride: Optional[Union[int, Tuple[int]]] = None,
|
||||
padding: Union[int, Tuple[int]] = 0,
|
||||
):
|
||||
super().__init__(mx.mean, 0, kernel_size, stride, padding)
|
||||
|
||||
|
@ -12,7 +12,7 @@ def quantize(
|
||||
model: Module,
|
||||
group_size: int = 64,
|
||||
bits: int = 4,
|
||||
class_predicate: Optional[callable] = None,
|
||||
class_predicate: Optional[Callable] = None,
|
||||
):
|
||||
"""Quantize the sub-modules of a module according to a predicate.
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import math
|
||||
from typing import Literal
|
||||
from typing import Literal, Optional
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
@ -22,7 +22,7 @@ def _reduce(loss: mx.array, reduction: Reduction = "none"):
|
||||
def cross_entropy(
|
||||
logits: mx.array,
|
||||
targets: mx.array,
|
||||
weights: mx.array = None,
|
||||
weights: Optional[mx.array] = None,
|
||||
axis: int = -1,
|
||||
label_smoothing: float = 0.0,
|
||||
reduction: Reduction = "none",
|
||||
@ -117,7 +117,7 @@ def cross_entropy(
|
||||
def binary_cross_entropy(
|
||||
inputs: mx.array,
|
||||
targets: mx.array,
|
||||
weights: mx.array = None,
|
||||
weights: Optional[mx.array] = None,
|
||||
with_logits: bool = True,
|
||||
reduction: Reduction = "mean",
|
||||
) -> mx.array:
|
||||
|
@ -1,7 +1,7 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from functools import wraps
|
||||
from typing import Callable
|
||||
from typing import Callable, Optional
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
@ -37,7 +37,7 @@ def value_and_grad(model: Module, fn: Callable):
|
||||
return wrapped_value_grad_fn
|
||||
|
||||
|
||||
def checkpoint(module: Module, fn: Callable = None):
|
||||
def checkpoint(module: Module, fn: Optional[Callable] = None):
|
||||
"""Transform the passed callable to one that performs gradient
|
||||
checkpointing with respect to the trainable parameters of the module (and
|
||||
the callable's inputs).
|
||||
|
@ -4,6 +4,7 @@ import math
|
||||
from typing import Callable, List, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx.nn import Module
|
||||
from mlx.utils import tree_map, tree_reduce
|
||||
|
||||
|
||||
@ -17,7 +18,7 @@ class Optimizer:
|
||||
self._state = {"step": mx.array(0, mx.uint64)}
|
||||
self._schedulers = {k: v for k, v in (schedulers or {}).items()}
|
||||
|
||||
def update(self, model: "mlx.nn.Module", gradients: dict):
|
||||
def update(self, model: Module, gradients: dict):
|
||||
"""Apply the gradients to the parameters of the model and update the
|
||||
model with the new parameters.
|
||||
|
||||
|
@ -1,10 +1,10 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
from collections import defaultdict
|
||||
from typing import Any, Callable, Tuple
|
||||
from typing import Any, Callable, Optional, Tuple
|
||||
|
||||
|
||||
def tree_map(
|
||||
fn: Callable, tree: Any, *rest: Tuple[Any], is_leaf: Callable = None
|
||||
fn: Callable, tree: Any, *rest: Any, is_leaf: Optional[Callable] = None
|
||||
) -> Any:
|
||||
"""Applies ``fn`` to the leaves of the Python tree ``tree`` and
|
||||
returns a new collection with the results.
|
||||
@ -59,8 +59,8 @@ def tree_map(
|
||||
def tree_map_with_path(
|
||||
fn: Callable,
|
||||
tree: Any,
|
||||
*rest: Tuple[Any],
|
||||
is_leaf: Callable = None,
|
||||
*rest: Any,
|
||||
is_leaf: Optional[Callable] = None,
|
||||
path: Any = None,
|
||||
) -> Any:
|
||||
"""Applies ``fn`` to the path and leaves of the Python tree ``tree`` and
|
||||
|
@ -9,6 +9,7 @@
|
||||
#include <nanobind/stl/string.h>
|
||||
#include <nanobind/stl/variant.h>
|
||||
#include <nanobind/stl/vector.h>
|
||||
#include <nanobind/typing.h>
|
||||
|
||||
#include "mlx/backend/metal/metal.h"
|
||||
#include "python/src/buffer.h"
|
||||
@ -113,6 +114,7 @@ void init_array(nb::module_& m) {
|
||||
.def("__hash__", [](const Dtype& t) {
|
||||
return static_cast<int64_t>(t.val);
|
||||
});
|
||||
|
||||
m.attr("bool_") = nb::cast(bool_);
|
||||
m.attr("uint8") = nb::cast(uint8);
|
||||
m.attr("uint16") = nb::cast(uint16);
|
||||
@ -177,7 +179,7 @@ void init_array(nb::module_& m) {
|
||||
.export_values();
|
||||
nb::class_<ArrayAt>(
|
||||
m,
|
||||
"_ArrayAt",
|
||||
"ArrayAt",
|
||||
R"pbdoc(
|
||||
A helper object to apply updates at specific indices.
|
||||
)pbdoc")
|
||||
@ -195,7 +197,7 @@ void init_array(nb::module_& m) {
|
||||
|
||||
nb::class_<ArrayPythonIterator>(
|
||||
m,
|
||||
"_ArrayIterator",
|
||||
"ArrayIterator",
|
||||
R"pbdoc(
|
||||
A helper object to iterate over the 1st dimension of an array.
|
||||
)pbdoc")
|
||||
|
@ -229,14 +229,16 @@ void init_fast(nb::module_& parent_module) {
|
||||
Returns:
|
||||
Callable ``metal_kernel``.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def exp_elementwise(a: mx.array):
|
||||
source = """
|
||||
source = '''
|
||||
uint elem = thread_position_in_grid.x;
|
||||
T tmp = inp[elem];
|
||||
out[elem] = metal::exp(tmp);
|
||||
"""
|
||||
'''
|
||||
|
||||
kernel = mx.fast.metal_kernel(
|
||||
name="myexp",
|
||||
@ -256,7 +258,6 @@ void init_fast(nb::module_& parent_module) {
|
||||
a = mx.random.normal(shape=(4, 16)).astype(mx.float16)
|
||||
b = exp_elementwise(a)
|
||||
assert mx.allclose(b, mx.exp(a))
|
||||
|
||||
)pbdoc")
|
||||
.def(
|
||||
"__call__",
|
||||
|
@ -63,7 +63,7 @@ void init_linalg(nb::module_& parent_module) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def norm(a: array, /, ord: Union[None, scalar, str] = None, axis: Union[None, int, List[int]] = None, keepdims: bool = False, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def norm(a: array, /, ord: Union[None, int, float, str] = None, axis: Union[None, int, list[int]] = None, keepdims: bool = False, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
Matrix or vector norm.
|
||||
|
||||
@ -74,7 +74,7 @@ void init_linalg(nb::module_& parent_module) {
|
||||
a (array): Input array. If ``axis`` is ``None``, ``a`` must be 1-D or 2-D,
|
||||
unless ``ord`` is ``None``. If both ``axis`` and ``ord`` are ``None``, the
|
||||
2-norm of ``a.flatten`` will be returned.
|
||||
ord (scalar or str, optional): Order of the norm (see table under ``Notes``).
|
||||
ord (int, float or str, optional): Order of the norm (see table under ``Notes``).
|
||||
If ``None``, the 2-norm (or Frobenius norm for matrices) will be computed
|
||||
along the given ``axis``. Default: ``None``.
|
||||
axis (int or list(int), optional): If ``axis`` is an integer, it specifies the
|
||||
@ -187,7 +187,7 @@ void init_linalg(nb::module_& parent_module) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def qr(a: array, *, stream: Union[None, Stream, Device] = None) -> (array, array)"),
|
||||
"def qr(a: array, *, stream: Union[None, Stream, Device] = None) -> tuple(array, array)"),
|
||||
R"pbdoc(
|
||||
The QR factorization of the input matrix.
|
||||
|
||||
@ -220,7 +220,7 @@ void init_linalg(nb::module_& parent_module) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def svd(a: array, *, stream: Union[None, Stream, Device] = None) -> (array, array, array)"),
|
||||
"def svd(a: array, *, stream: Union[None, Stream, Device] = None) -> tuple(array, array, array)"),
|
||||
R"pbdoc(
|
||||
The Singular Value Decomposition (SVD) of the input matrix.
|
||||
|
||||
|
@ -1360,7 +1360,7 @@ void init_ops(nb::module_& m) {
|
||||
"dtype"_a = nb::none(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def arange(stop : Union[int, float], step : Union[None, int, float], dtype: Optional[Dtype] = None, *, stream: Union[None, Stream, Device] = None) -> array"));
|
||||
"def arange(stop : Union[int, float], step : Union[None, int, float] = None, dtype: Optional[Dtype] = None, *, stream: Union[None, Stream, Device] = None) -> array"));
|
||||
m.def(
|
||||
"linspace",
|
||||
[](Scalar start,
|
||||
@ -2695,7 +2695,7 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def concatenate(arrays: List[array], axis: Optional[int] = 0, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def concatenate(arrays: list[array], axis: Optional[int] = 0, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
Concatenate the arrays along the given axis.
|
||||
|
||||
@ -2723,7 +2723,7 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def concat(arrays: List[array], axis: Optional[int] = 0, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def concat(arrays: list[array], axis: Optional[int] = 0, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
See :func:`concatenate`.
|
||||
)pbdoc");
|
||||
@ -2743,7 +2743,7 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def stack(arrays: List[array], axis: Optional[int] = 0, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def stack(arrays: list[array], axis: Optional[int] = 0, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
Stacks the arrays along a new axis.
|
||||
|
||||
@ -2770,7 +2770,7 @@ void init_ops(nb::module_& m) {
|
||||
"indexing"_a = "xy",
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def meshgrid(*arrays: array, sparse: Optional[bool] = false, indexing: Optional[str] = 'xy', stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def meshgrid(*arrays: array, sparse: Optional[bool] = False, indexing: Optional[str] = 'xy', stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
Generate multidimensional coordinate grids from 1-D coordinate arrays
|
||||
|
||||
@ -2889,7 +2889,7 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def pad(a: array, pad_width: Union[int, Tuple[int], Tuple[int, int], List[Tuple[int, int]]], mode: Literal['constant', 'edge'] = 'constant', constant_values: Union[scalar, array] = 0, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def pad(a: array, pad_width: Union[int, tuple[int], tuple[int, int], list[tuple[int, int]]], mode: Literal['constant', 'edge'] = 'constant', constant_values: Union[scalar, array] = 0, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
Pad an array with a constant value
|
||||
|
||||
@ -3291,7 +3291,7 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def conv2d(input: array, weight: array, /, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def conv2d(input: array, weight: array, /, stride: Union[int, tuple[int, int]] = 1, padding: Union[int, tuple[int, int]] = 0, dilation: Union[int, tuple[int, int]] = 1, groups: int = 1, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
2D convolution over an input with several channels
|
||||
|
||||
@ -3361,7 +3361,7 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def conv3d(input: array, weight: array, /, stride: Union[int, Tuple[int, int, int]] = 1, padding: Union[int, Tuple[int, int, int]] = 0, dilation: Union[int, Tuple[int, int, int]] = 1, groups: int = 1, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def conv3d(input: array, weight: array, /, stride: Union[int, tuple[int, int, int]] = 1, padding: Union[int, tuple[int, int, int]] = 0, dilation: Union[int, tuple[int, int, int]] = 1, groups: int = 1, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
3D convolution over an input with several channels
|
||||
|
||||
@ -3460,7 +3460,7 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def conv_general(input: array, weight: array, /, stride: Union[int, Sequence[int]] = 1, padding: Union[int, Sequence[int], Tuple[Sequence[int], Sequence[int]]] = 0, kernel_dilation: Union[int, Sequence[int]] = 1, input_dilation: Union[int, Sequence[int]] = 1, groups: int = 1, flip: bool = false, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def conv_general(input: array, weight: array, /, stride: Union[int, Sequence[int]] = 1, padding: Union[int, Sequence[int], tuple[Sequence[int], Sequence[int]]] = 0, kernel_dilation: Union[int, Sequence[int]] = 1, input_dilation: Union[int, Sequence[int]] = 1, groups: int = 1, flip: bool = False, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
General convolution over an input with several channels
|
||||
|
||||
@ -3560,7 +3560,7 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def load(file: str, /, format: Optional[str] = None, return_metadata: bool = False, *, stream: Union[None, Stream, Device] = None) -> Union[array, Dict[str, array]]"),
|
||||
"def load(file: str, /, format: Optional[str] = None, return_metadata: bool = False, *, stream: Union[None, Stream, Device] = None) -> Union[array, dict[str, array]]"),
|
||||
R"pbdoc(
|
||||
Load array(s) from a binary file.
|
||||
|
||||
@ -3594,7 +3594,7 @@ void init_ops(nb::module_& m) {
|
||||
"arrays"_a,
|
||||
"metadata"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def save_safetensors(file: str, arrays: Dict[str, array], metadata: Optional[Dict[str, str]] = None)"),
|
||||
"def save_safetensors(file: str, arrays: dict[str, array], metadata: Optional[dict[str, str]] = None)"),
|
||||
R"pbdoc(
|
||||
Save array(s) to a binary file in ``.safetensors`` format.
|
||||
|
||||
@ -3615,7 +3615,7 @@ void init_ops(nb::module_& m) {
|
||||
"arrays"_a,
|
||||
"metadata"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def save_gguf(file: str, arrays: Dict[str, array], metadata: Dict[str, Union[array, str, List[str]]])"),
|
||||
"def save_gguf(file: str, arrays: dict[str, array], metadata: dict[str, Union[array, str, list[str]]])"),
|
||||
R"pbdoc(
|
||||
Save array(s) to a binary file in ``.gguf`` format.
|
||||
|
||||
@ -3769,7 +3769,7 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def quantize(w: array, /, group_size: int = 64, bits : int = 4, *, stream: Union[None, Stream, Device] = None) -> Tuple[array, array, array]"),
|
||||
"def quantize(w: array, /, group_size: int = 64, bits : int = 4, *, stream: Union[None, Stream, Device] = None) -> tuple[array, array, array]"),
|
||||
R"pbdoc(
|
||||
Quantize the matrix ``w`` using ``bits`` bits per element.
|
||||
|
||||
@ -3924,7 +3924,7 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def tensordot(a: array, b: array, /, axes: Union[int, List[Sequence[int]]] = 2, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def tensordot(a: array, b: array, /, axes: Union[int, list[Sequence[int]]] = 2, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
Compute the tensor dot product along the specified axes.
|
||||
|
||||
@ -4046,7 +4046,7 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def block_masked_mm(a: array, b: array, /, block_size: int = 64, mask_out: array, mask_lhs: array, mask_rhs: array, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def block_masked_mm(a: array, b: array, /, block_size: int = 64, mask_out: Optional[array] = None, mask_lhs: Optional[array] = None, mask_rhs: Optional[array] = None, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
Matrix multiplication with block masking.
|
||||
|
||||
@ -4189,7 +4189,7 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def trace(a: array, /, offset: int = 0, axis1: int = 0, axis2: int = 1, dtype = Optional[Dtype] = None, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def trace(a: array, /, offset: int = 0, axis1: int = 0, axis2: int = 1, dtype: Optional[Dtype] = None, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
Return the sum along a specified diagonal in the given array.
|
||||
|
||||
@ -4218,7 +4218,7 @@ void init_ops(nb::module_& m) {
|
||||
"arys"_a,
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def atleast_1d(*arys: array, stream: Union[None, Stream, Device] = None) -> Union[array, List[array]]"),
|
||||
"def atleast_1d(*arys: array, stream: Union[None, Stream, Device] = None) -> Union[array, list[array]]"),
|
||||
R"pbdoc(
|
||||
Convert all arrays to have at least one dimension.
|
||||
|
||||
@ -4240,7 +4240,7 @@ void init_ops(nb::module_& m) {
|
||||
"arys"_a,
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def atleast_2d(*arys: array, stream: Union[None, Stream, Device] = None) -> Union[array, List[array]]"),
|
||||
"def atleast_2d(*arys: array, stream: Union[None, Stream, Device] = None) -> Union[array, list[array]]"),
|
||||
R"pbdoc(
|
||||
Convert all arrays to have at least two dimensions.
|
||||
|
||||
@ -4262,7 +4262,7 @@ void init_ops(nb::module_& m) {
|
||||
"arys"_a,
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def atleast_3d(*arys: array, stream: Union[None, Stream, Device] = None) -> Union[array, List[array]]"),
|
||||
"def atleast_3d(*arys: array, stream: Union[None, Stream, Device] = None) -> Union[array, list[array]]"),
|
||||
R"pbdoc(
|
||||
Convert all arrays to have at least three dimensions.
|
||||
|
||||
@ -4511,7 +4511,7 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def hadamard_transform(a: array, Optional[float] scale = None, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def hadamard_transform(a: array, scale: Optional[float] = None, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
Perform the Walsh-Hadamard transform along the final axis.
|
||||
|
||||
@ -4575,7 +4575,7 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def einsum(subscripts: str, *operands, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def einsum(subscripts: str, *operands, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
|
||||
Perform the Einstein summation convention on the operands.
|
||||
|
@ -93,7 +93,7 @@ void init_random(nb::module_& parent_module) {
|
||||
"num"_a = 2,
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def split(key: array, num: int = 2, stream: Union[None, Stream, Device] = None) -> array)"),
|
||||
"def split(key: array, num: int = 2, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
Split a PRNG key into sub keys.
|
||||
|
||||
@ -321,7 +321,7 @@ void init_random(nb::module_& parent_module) {
|
||||
"key"_a = nb::none(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def truncated_normal(lower: Union[scalar, array], upper: Union[scalar, array], shape: Optional[Sequence[int]] = None, dtype: float32, key: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def truncated_normal(lower: Union[scalar, array], upper: Union[scalar, array], shape: Optional[Sequence[int]] = None, dtype: Optional[Dtype] = float32, key: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
Generate values from a truncated normal distribution.
|
||||
|
||||
|
@ -4,6 +4,7 @@
|
||||
|
||||
#include <nanobind/nanobind.h>
|
||||
#include <nanobind/stl/optional.h>
|
||||
#include <nanobind/stl/string.h>
|
||||
#include <nanobind/stl/variant.h>
|
||||
|
||||
#include "mlx/stream.h"
|
||||
@ -56,8 +57,8 @@ void init_stream(nb::module_& m) {
|
||||
os << s;
|
||||
return os.str();
|
||||
})
|
||||
.def("__eq__", [](const Stream& s1, const Stream& s2) {
|
||||
return s1 == s2;
|
||||
.def("__eq__", [](const Stream& s, const nb::object& other) {
|
||||
return nb::isinstance<Stream>(other) && s == nb::cast<Stream>(other);
|
||||
});
|
||||
|
||||
nb::implicitly_convertible<Device::DeviceType, Device>();
|
||||
|
@ -178,7 +178,7 @@ auto py_value_and_grad(
|
||||
msg << error_msg_tag << " The return value of the function "
|
||||
<< "whose gradient we want to compute should be either a "
|
||||
<< "scalar array or a tuple with the first value being a "
|
||||
<< "scalar array (Union[array, Tuple[array, Any, ...]]); but "
|
||||
<< "scalar array (Union[array, tuple[array, Any, ...]]); but "
|
||||
<< type_name_str(py_value_out) << " was returned.";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
@ -197,7 +197,7 @@ auto py_value_and_grad(
|
||||
msg << error_msg_tag << " The return value of the function "
|
||||
<< "whose gradient we want to compute should be either a "
|
||||
<< "scalar array or a tuple with the first value being a "
|
||||
<< "scalar array (Union[array, Tuple[array, Any, ...]]); but it "
|
||||
<< "scalar array (Union[array, tuple[array, Any, ...]]); but it "
|
||||
<< "was a tuple with the first value being of type "
|
||||
<< type_name_str(ret[0]) << " .";
|
||||
throw std::invalid_argument(msg.str());
|
||||
@ -973,13 +973,13 @@ void init_transforms(nb::module_& m) {
|
||||
.def(
|
||||
nb::init<nb::callable>(),
|
||||
"f"_a,
|
||||
nb::sig("def __init__(self, f: callable)"))
|
||||
nb::sig("def __init__(self, f: Callable)"))
|
||||
.def("__call__", &PyCustomFunction::call_impl)
|
||||
.def(
|
||||
"vjp",
|
||||
&PyCustomFunction::set_vjp,
|
||||
"f"_a,
|
||||
nb::sig("def vjp(self, f_vjp: callable)"),
|
||||
nb::sig("def vjp(self, f: Callable)"),
|
||||
R"pbdoc(
|
||||
Define a custom vjp for the wrapped function.
|
||||
|
||||
@ -1001,7 +1001,7 @@ void init_transforms(nb::module_& m) {
|
||||
"jvp",
|
||||
&PyCustomFunction::set_jvp,
|
||||
"f"_a,
|
||||
nb::sig("def jvp(self, f_jvp: callable)"),
|
||||
nb::sig("def jvp(self, f: Callable)"),
|
||||
R"pbdoc(
|
||||
Define a custom jvp for the wrapped function.
|
||||
|
||||
@ -1021,7 +1021,7 @@ void init_transforms(nb::module_& m) {
|
||||
"vmap",
|
||||
&PyCustomFunction::set_vmap,
|
||||
"f"_a,
|
||||
nb::sig("def vmap(self, f_vmap: callable)"),
|
||||
nb::sig("def vmap(self, f: Callable)"),
|
||||
R"pbdoc(
|
||||
Define a custom vectorization transformation for the wrapped function.
|
||||
|
||||
@ -1116,7 +1116,7 @@ void init_transforms(nb::module_& m) {
|
||||
"primals"_a,
|
||||
"tangents"_a,
|
||||
nb::sig(
|
||||
"def jvp(fun: callable, primals: List[array], tangents: List[array]) -> Tuple[List[array], List[array]]"),
|
||||
"def jvp(fun: Callable, primals: list[array], tangents: list[array]) -> tuple[list[array], list[array]]"),
|
||||
R"pbdoc(
|
||||
Compute the Jacobian-vector product.
|
||||
|
||||
@ -1124,7 +1124,7 @@ void init_transforms(nb::module_& m) {
|
||||
at ``primals`` with the ``tangents``.
|
||||
|
||||
Args:
|
||||
fun (callable): A function which takes a variable number of :class:`array`
|
||||
fun (Callable): A function which takes a variable number of :class:`array`
|
||||
and returns a single :class:`array` or list of :class:`array`.
|
||||
primals (list(array)): A list of :class:`array` at which to
|
||||
evaluate the Jacobian.
|
||||
@ -1155,7 +1155,7 @@ void init_transforms(nb::module_& m) {
|
||||
"primals"_a,
|
||||
"cotangents"_a,
|
||||
nb::sig(
|
||||
"def vjp(fun: callable, primals: List[array], cotangents: List[array]) -> Tuple[List[array], List[array]]"),
|
||||
"def vjp(fun: Callable, primals: list[array], cotangents: list[array]) -> tuple[list[array], list[array]]"),
|
||||
R"pbdoc(
|
||||
Compute the vector-Jacobian product.
|
||||
|
||||
@ -1163,7 +1163,7 @@ void init_transforms(nb::module_& m) {
|
||||
function ``fun`` evaluated at ``primals``.
|
||||
|
||||
Args:
|
||||
fun (callable): A function which takes a variable number of :class:`array`
|
||||
fun (Callable): A function which takes a variable number of :class:`array`
|
||||
and returns a single :class:`array` or list of :class:`array`.
|
||||
primals (list(array)): A list of :class:`array` at which to
|
||||
evaluate the Jacobian.
|
||||
@ -1189,7 +1189,7 @@ void init_transforms(nb::module_& m) {
|
||||
"argnums"_a = nb::none(),
|
||||
"argnames"_a = std::vector<std::string>{},
|
||||
nb::sig(
|
||||
"def value_and_grad(fun: callable, argnums: Optional[Union[int, List[int]]] = None, argnames: Union[str, List[str]] = []) -> callable"),
|
||||
"def value_and_grad(fun: Callable, argnums: Optional[Union[int, list[int]]] = None, argnames: Union[str, list[str]] = []) -> Callable"),
|
||||
R"pbdoc(
|
||||
Returns a function which computes the value and gradient of ``fun``.
|
||||
|
||||
@ -1221,7 +1221,7 @@ void init_transforms(nb::module_& m) {
|
||||
(loss, mse, l1), grads = mx.value_and_grad(lasso)(params, inputs, targets)
|
||||
|
||||
Args:
|
||||
fun (callable): A function which takes a variable number of
|
||||
fun (Callable): A function which takes a variable number of
|
||||
:class:`array` or trees of :class:`array` and returns
|
||||
a scalar output :class:`array` or a tuple the first element
|
||||
of which should be a scalar :class:`array`.
|
||||
@ -1235,7 +1235,7 @@ void init_transforms(nb::module_& m) {
|
||||
no gradients for keyword arguments by default.
|
||||
|
||||
Returns:
|
||||
callable: A function which returns a tuple where the first element
|
||||
Callable: A function which returns a tuple where the first element
|
||||
is the output of `fun` and the second element is the gradients w.r.t.
|
||||
the loss.
|
||||
)pbdoc");
|
||||
@ -1257,12 +1257,12 @@ void init_transforms(nb::module_& m) {
|
||||
"argnums"_a = nb::none(),
|
||||
"argnames"_a = std::vector<std::string>{},
|
||||
nb::sig(
|
||||
"def grad(fun: callable, argnums: Optional[Union[int, List[int]]] = None, argnames: Union[str, List[str]] = []) -> callable"),
|
||||
"def grad(fun: Callable, argnums: Optional[Union[int, list[int]]] = None, argnames: Union[str, list[str]] = []) -> Callable"),
|
||||
R"pbdoc(
|
||||
Returns a function which computes the gradient of ``fun``.
|
||||
|
||||
Args:
|
||||
fun (callable): A function which takes a variable number of
|
||||
fun (Callable): A function which takes a variable number of
|
||||
:class:`array` or trees of :class:`array` and returns
|
||||
a scalar output :class:`array`.
|
||||
argnums (int or list(int), optional): Specify the index (or indices)
|
||||
@ -1275,7 +1275,7 @@ void init_transforms(nb::module_& m) {
|
||||
no gradients for keyword arguments by default.
|
||||
|
||||
Returns:
|
||||
callable: A function which has the same input arguments as ``fun`` and
|
||||
Callable: A function which has the same input arguments as ``fun`` and
|
||||
returns the gradient(s).
|
||||
)pbdoc");
|
||||
m.def(
|
||||
@ -1289,12 +1289,12 @@ void init_transforms(nb::module_& m) {
|
||||
"in_axes"_a = 0,
|
||||
"out_axes"_a = 0,
|
||||
nb::sig(
|
||||
"def vmap(fun: callable, in_axes: object = 0, out_axes: object = 0) -> callable"),
|
||||
"def vmap(fun: Callable, in_axes: object = 0, out_axes: object = 0) -> Callable"),
|
||||
R"pbdoc(
|
||||
Returns a vectorized version of ``fun``.
|
||||
|
||||
Args:
|
||||
fun (callable): A function which takes a variable number of
|
||||
fun (Callable): A function which takes a variable number of
|
||||
:class:`array` or a tree of :class:`array` and returns
|
||||
a variable number of :class:`array` or a tree of :class:`array`.
|
||||
in_axes (int, optional): An integer or a valid prefix tree of the
|
||||
@ -1307,7 +1307,7 @@ void init_transforms(nb::module_& m) {
|
||||
Defaults to ``0``.
|
||||
|
||||
Returns:
|
||||
callable: The vectorized function.
|
||||
Callable: The vectorized function.
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"export_to_dot",
|
||||
@ -1367,11 +1367,13 @@ void init_transforms(nb::module_& m) {
|
||||
"inputs"_a = nb::none(),
|
||||
"outputs"_a = nb::none(),
|
||||
"shapeless"_a = false,
|
||||
nb::sig(
|
||||
"def compile(fun: Callable, inputs: Optional[object] = None, outputs: Optional[object] = None, shapeless: bool = False) -> Callable"),
|
||||
R"pbdoc(
|
||||
Returns a compiled function which produces the same output as ``fun``.
|
||||
|
||||
Args:
|
||||
fun (callable): A function which takes a variable number of
|
||||
fun (Callable): A function which takes a variable number of
|
||||
:class:`array` or trees of :class:`array` and returns
|
||||
a variable number of :class:`array` or trees of :class:`array`.
|
||||
inputs (list or dict, optional): These inputs will be captured during
|
||||
@ -1392,7 +1394,7 @@ void init_transforms(nb::module_& m) {
|
||||
``shapeless`` set to ``True``. Default: ``False``
|
||||
|
||||
Returns:
|
||||
callable: A compiled function which has the same input arguments
|
||||
Callable: A compiled function which has the same input arguments
|
||||
as ``fun`` and returns the the same output(s).
|
||||
)pbdoc");
|
||||
m.def(
|
||||
|
Loading…
Reference in New Issue
Block a user