implemented batchnorm layer

This commit is contained in:
m0saan 2023-12-18 23:26:37 +01:00
parent 22fee5a383
commit 2b617b63bd

View File

@ -1,5 +1,7 @@
# Copyright © 2023 Apple Inc.
from typing import Tuple
import mlx.core as mx
from mlx.nn.layers.base import Module
@ -97,7 +99,7 @@ class GroupNorm(Module):
where :math:`\gamma` and :math:`\beta` are learned per feature dimension
parameters initialized at 1 and 0 respectively. However, the mean and
variance are computed over the spatial dimensions and each group of
features. In particular, the input is split into num_groups across the
features. In particular, the input is split into num_groups accross the
feature dimension.
The feature dimension is assumed to be the last dimension and the dimensions
@ -178,3 +180,95 @@ class GroupNorm(Module):
)
x = group_norm(x)
return (self.weight * x + self.bias) if "weight" in self else x
class BatchNorm1d(Module):
r"""Applies Batch Normalization [1] to the inputs.
Computes
.. math::
y = \frac{x - E[x]}{\sqrt{Var[x]} + \epsilon} \gamma + \beta,
where :math:`\gamma` and :math:`\beta` are learned per feature dimension
parameters initialized at 1 and 0 respectively.
[1]: https://arxiv.org/abs/1502.03167
Args:
num_features (int): The feature dimension of the input to normalize over.
eps (float, optional): A small additive constant for numerical stability. Default is 1e-5.
momentum (float, optional): The momentum for updating the running mean and variance. Default is 0.1.
affine (bool, optional): If True, learn an affine transform to apply after the normalization. Default is True.
Examples:
>>> import mlx.core as mx
>>> import mlx.nn as nn
>>> # With Learnable Parameters
>>> m = nn.BatchNorm1d(100)
>>> # Without Learnable Parameters
>>> m = nn.BatchNorm1d(4, affine=False)
>>> input = mx.random.normal(20, 4)
>>> output = m(input)
"""
def __init__(
self,
num_features: int,
eps: float = 1e-5,
momentum: float = 0.1,
affine: bool = True,
):
super().__init__()
if affine:
self.bias = mx.zeros((num_features,))
self.weight = mx.ones((num_features,))
self.num_features = num_features
self.eps = eps
self.momentum = momentum
self.running_mean = mx.zeros((num_features,))
self.running_var = mx.ones((num_features,))
def _extra_repr(self):
return f"num_features={self.num_features}, eps={self.eps}, momentum={self.momentum}, affine={'weight' in self}"
def _calc_stats(self, x: mx.array) -> Tuple[mx.array, mx.array]:
"""
Calculate the mean and variance of the input tensor.
Args:
x (mx.array): Input tensor.
Returns:
tuple: Tuple containing mean and variance.
"""
means = mx.mean(x, axis=0, keepdims=True)
var = mx.var(x, axis=0, keepdims=True)
self.running_mean = (
self.momentum * self.running_mean + (1 - self.momentum) * means
)
self.running_var = self.momentum * self.running_var + (1 - self.momentum) * var
return means, var
def __call__(self, x: mx.array):
"""
Forward pass of BatchNorm1d.
Args:
x (mx.array): Input tensor.
Returns:
mx.array: Output tensor.
"""
if x.ndim != 2:
raise ValueError("BatchNorm1d only supports 2D inputs")
means, var = self.running_mean, self.running_var
if self.training:
means, var = self._calc_stats(x)
x = (x - means) * mx.rsqrt(var + self.eps)
return (self.weight * x + self.bias) if "weight" in self else x