mirror of
https://github.com/ml-explore/mlx.git
synced 2025-08-27 00:09:17 +08:00
parent
c1e1c1443f
commit
2d0130f80f
@ -46,7 +46,7 @@ def l1_loss(
|
||||
|
||||
|
||||
def mse_loss(
|
||||
predictions: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
|
||||
predictions: mx.array, targets: mx.array, reduction: str = "none"
|
||||
) -> mx.array:
|
||||
"""
|
||||
Computes the mean squared error loss between predictions and targets.
|
||||
@ -54,56 +54,62 @@ def mse_loss(
|
||||
Args:
|
||||
predictions (mx.array): The predicted values.
|
||||
targets (mx.array): The target values.
|
||||
axis (int, optional): The axis over which to compute softmax. Default: ``-1``.
|
||||
reduction (str, optional): Specifies the reduction to apply to the output:
|
||||
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
|
||||
|
||||
Returns:
|
||||
mx.array: The computed mean squared error loss.
|
||||
"""
|
||||
loss = mx.mean(mx.square(predictions - targets), axis)
|
||||
loss = mx.square(predictions - targets)
|
||||
|
||||
return _reduce(loss, reduction)
|
||||
|
||||
|
||||
def nll_loss(
|
||||
logits: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
|
||||
inputs: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
|
||||
) -> mx.array:
|
||||
"""
|
||||
Computes the negative log likelihood loss between logits and targets.
|
||||
Computes the negative log likelihood loss between inputs and targets.
|
||||
|
||||
Args:
|
||||
logits (mx.array): The predicted logits.
|
||||
inputs (mx.array): The predicted distribution in log space.
|
||||
targets (mx.array): The target values.
|
||||
axis (int, optional): The axis over which to compute softmax. Default: ``-1``.
|
||||
axis (int, optional): The distribution axis. Default: ``-1``.
|
||||
reduction (str, optional): Specifies the reduction to apply to the output:
|
||||
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
|
||||
|
||||
Returns:
|
||||
mx.array: The computed NLL loss.
|
||||
"""
|
||||
loss = -mx.take_along_axis(logits, targets[..., None], axis).squeeze(-1)
|
||||
loss = -mx.take_along_axis(inputs, targets[..., None], axis).squeeze(-1)
|
||||
|
||||
return _reduce(loss, reduction)
|
||||
|
||||
|
||||
def kl_div_loss(
|
||||
logits: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
|
||||
inputs: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
|
||||
) -> mx.array:
|
||||
"""
|
||||
Computes the Kullback-Leibler divergence loss between logits and targets.
|
||||
Computes the Kullback-Leibler divergence loss between targets and the
|
||||
inputs.
|
||||
|
||||
Computes the following when ``reduction == 'none'``:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
mx.exp(targets) * (targets - inputs).sum(axis)
|
||||
|
||||
Args:
|
||||
logits (mx.array): Logits for the distribution p.
|
||||
targets (mx.array): Log probabilities for the distribution q.
|
||||
axis (int, optional): The axis over which to compute softmax. Default: ``-1``.
|
||||
inputs (mx.array): Log probabilities for the predicted distribution.
|
||||
targets (mx.array): Log probabilities for the target distribution.
|
||||
axis (int, optional): The distribution axis. Default: ``-1``.
|
||||
reduction (str, optional): Specifies the reduction to apply to the output:
|
||||
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
|
||||
|
||||
Returns:
|
||||
mx.array: The computed Kullback-Leibler divergence loss.
|
||||
"""
|
||||
loss = mx.sum(mx.exp(targets) * (targets - logits), axis)
|
||||
loss = mx.sum(mx.exp(targets) * (targets - inputs), axis)
|
||||
|
||||
return _reduce(loss, reduction)
|
||||
|
||||
|
@ -50,7 +50,7 @@ class TestNN(mlx_tests.MLXTestCase):
|
||||
# Test with reduction 'none'
|
||||
losses_none = nn.losses.mse_loss(predictions, targets, reduction="none")
|
||||
expected_none = mx.array([0.04, 0.01, 0.01, 0.04])
|
||||
self.assertTrue(mx.array_equal(losses_none, expected_none))
|
||||
self.assertTrue(mx.allclose(losses_none, expected_none))
|
||||
|
||||
# Test with reduction 'mean'
|
||||
losses_mean = nn.losses.mse_loss(predictions, targets, reduction="mean")
|
||||
@ -82,23 +82,23 @@ class TestNN(mlx_tests.MLXTestCase):
|
||||
self.assertEqual(losses_sum, expected_sum)
|
||||
|
||||
def test_kl_div_loss(self):
|
||||
p_logits = mx.array([[1.0, 2.0], [0.5, 1.0]])
|
||||
q_logits = mx.array([[0.8, 1.5], [0.4, 1.2]])
|
||||
p_logits = mx.log(mx.array([[0.5, 0.5], [0.8, 0.2]]))
|
||||
q_logits = mx.log(mx.array([[0.5, 0.5], [0.2, 0.8]]))
|
||||
|
||||
# Test with reduction 'none'
|
||||
losses_none = nn.losses.kl_div_loss(p_logits, q_logits, reduction="none")
|
||||
expected_none = mx.array([0.22314353, 0.09966799])
|
||||
self.assertTrue(mx.array_equal(losses_none, expected_none))
|
||||
expected_none = mx.array([0.0, 0.831777])
|
||||
self.assertTrue(mx.allclose(losses_none, expected_none))
|
||||
|
||||
# Test with reduction 'mean'
|
||||
losses_mean = nn.losses.kl_div_loss(p_logits, q_logits, reduction="mean")
|
||||
expected_mean = mx.mean(expected_none)
|
||||
self.assertEqual(losses_mean, expected_mean)
|
||||
self.assertTrue(mx.allclose(losses_mean, expected_mean))
|
||||
|
||||
# Test with reduction 'sum'
|
||||
losses_sum = nn.losses.kl_div_loss(p_logits, q_logits, reduction="sum")
|
||||
expected_sum = mx.sum(expected_none)
|
||||
self.assertEqual(losses_sum, expected_sum)
|
||||
self.assertTrue(mx.allclose(losses_sum, expected_sum))
|
||||
|
||||
def test_gelu(self):
|
||||
inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]
|
||||
|
Loading…
Reference in New Issue
Block a user