fix loss tests (#118)

* fix loss tests

* use none as default
This commit is contained in:
Awni Hannun 2023-12-10 10:08:19 -08:00 committed by GitHub
parent c1e1c1443f
commit 2d0130f80f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 27 additions and 21 deletions

View File

@ -46,7 +46,7 @@ def l1_loss(
def mse_loss(
predictions: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
predictions: mx.array, targets: mx.array, reduction: str = "none"
) -> mx.array:
"""
Computes the mean squared error loss between predictions and targets.
@ -54,56 +54,62 @@ def mse_loss(
Args:
predictions (mx.array): The predicted values.
targets (mx.array): The target values.
axis (int, optional): The axis over which to compute softmax. Default: ``-1``.
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
Returns:
mx.array: The computed mean squared error loss.
"""
loss = mx.mean(mx.square(predictions - targets), axis)
loss = mx.square(predictions - targets)
return _reduce(loss, reduction)
def nll_loss(
logits: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
inputs: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
) -> mx.array:
"""
Computes the negative log likelihood loss between logits and targets.
Computes the negative log likelihood loss between inputs and targets.
Args:
logits (mx.array): The predicted logits.
inputs (mx.array): The predicted distribution in log space.
targets (mx.array): The target values.
axis (int, optional): The axis over which to compute softmax. Default: ``-1``.
axis (int, optional): The distribution axis. Default: ``-1``.
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
Returns:
mx.array: The computed NLL loss.
"""
loss = -mx.take_along_axis(logits, targets[..., None], axis).squeeze(-1)
loss = -mx.take_along_axis(inputs, targets[..., None], axis).squeeze(-1)
return _reduce(loss, reduction)
def kl_div_loss(
logits: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
inputs: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
) -> mx.array:
"""
Computes the Kullback-Leibler divergence loss between logits and targets.
Computes the Kullback-Leibler divergence loss between targets and the
inputs.
Computes the following when ``reduction == 'none'``:
.. code-block:: python
mx.exp(targets) * (targets - inputs).sum(axis)
Args:
logits (mx.array): Logits for the distribution p.
targets (mx.array): Log probabilities for the distribution q.
axis (int, optional): The axis over which to compute softmax. Default: ``-1``.
inputs (mx.array): Log probabilities for the predicted distribution.
targets (mx.array): Log probabilities for the target distribution.
axis (int, optional): The distribution axis. Default: ``-1``.
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
Returns:
mx.array: The computed Kullback-Leibler divergence loss.
"""
loss = mx.sum(mx.exp(targets) * (targets - logits), axis)
loss = mx.sum(mx.exp(targets) * (targets - inputs), axis)
return _reduce(loss, reduction)

View File

@ -50,7 +50,7 @@ class TestNN(mlx_tests.MLXTestCase):
# Test with reduction 'none'
losses_none = nn.losses.mse_loss(predictions, targets, reduction="none")
expected_none = mx.array([0.04, 0.01, 0.01, 0.04])
self.assertTrue(mx.array_equal(losses_none, expected_none))
self.assertTrue(mx.allclose(losses_none, expected_none))
# Test with reduction 'mean'
losses_mean = nn.losses.mse_loss(predictions, targets, reduction="mean")
@ -82,23 +82,23 @@ class TestNN(mlx_tests.MLXTestCase):
self.assertEqual(losses_sum, expected_sum)
def test_kl_div_loss(self):
p_logits = mx.array([[1.0, 2.0], [0.5, 1.0]])
q_logits = mx.array([[0.8, 1.5], [0.4, 1.2]])
p_logits = mx.log(mx.array([[0.5, 0.5], [0.8, 0.2]]))
q_logits = mx.log(mx.array([[0.5, 0.5], [0.2, 0.8]]))
# Test with reduction 'none'
losses_none = nn.losses.kl_div_loss(p_logits, q_logits, reduction="none")
expected_none = mx.array([0.22314353, 0.09966799])
self.assertTrue(mx.array_equal(losses_none, expected_none))
expected_none = mx.array([0.0, 0.831777])
self.assertTrue(mx.allclose(losses_none, expected_none))
# Test with reduction 'mean'
losses_mean = nn.losses.kl_div_loss(p_logits, q_logits, reduction="mean")
expected_mean = mx.mean(expected_none)
self.assertEqual(losses_mean, expected_mean)
self.assertTrue(mx.allclose(losses_mean, expected_mean))
# Test with reduction 'sum'
losses_sum = nn.losses.kl_div_loss(p_logits, q_logits, reduction="sum")
expected_sum = mx.sum(expected_none)
self.assertEqual(losses_sum, expected_sum)
self.assertTrue(mx.allclose(losses_sum, expected_sum))
def test_gelu(self):
inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]