mirror of
https://github.com/ml-explore/mlx.git
synced 2025-08-27 08:46:41 +08:00
parent
c1e1c1443f
commit
2d0130f80f
@ -46,7 +46,7 @@ def l1_loss(
|
|||||||
|
|
||||||
|
|
||||||
def mse_loss(
|
def mse_loss(
|
||||||
predictions: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
|
predictions: mx.array, targets: mx.array, reduction: str = "none"
|
||||||
) -> mx.array:
|
) -> mx.array:
|
||||||
"""
|
"""
|
||||||
Computes the mean squared error loss between predictions and targets.
|
Computes the mean squared error loss between predictions and targets.
|
||||||
@ -54,56 +54,62 @@ def mse_loss(
|
|||||||
Args:
|
Args:
|
||||||
predictions (mx.array): The predicted values.
|
predictions (mx.array): The predicted values.
|
||||||
targets (mx.array): The target values.
|
targets (mx.array): The target values.
|
||||||
axis (int, optional): The axis over which to compute softmax. Default: ``-1``.
|
|
||||||
reduction (str, optional): Specifies the reduction to apply to the output:
|
reduction (str, optional): Specifies the reduction to apply to the output:
|
||||||
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
|
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
mx.array: The computed mean squared error loss.
|
mx.array: The computed mean squared error loss.
|
||||||
"""
|
"""
|
||||||
loss = mx.mean(mx.square(predictions - targets), axis)
|
loss = mx.square(predictions - targets)
|
||||||
|
|
||||||
return _reduce(loss, reduction)
|
return _reduce(loss, reduction)
|
||||||
|
|
||||||
|
|
||||||
def nll_loss(
|
def nll_loss(
|
||||||
logits: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
|
inputs: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
|
||||||
) -> mx.array:
|
) -> mx.array:
|
||||||
"""
|
"""
|
||||||
Computes the negative log likelihood loss between logits and targets.
|
Computes the negative log likelihood loss between inputs and targets.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
logits (mx.array): The predicted logits.
|
inputs (mx.array): The predicted distribution in log space.
|
||||||
targets (mx.array): The target values.
|
targets (mx.array): The target values.
|
||||||
axis (int, optional): The axis over which to compute softmax. Default: ``-1``.
|
axis (int, optional): The distribution axis. Default: ``-1``.
|
||||||
reduction (str, optional): Specifies the reduction to apply to the output:
|
reduction (str, optional): Specifies the reduction to apply to the output:
|
||||||
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
|
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
mx.array: The computed NLL loss.
|
mx.array: The computed NLL loss.
|
||||||
"""
|
"""
|
||||||
loss = -mx.take_along_axis(logits, targets[..., None], axis).squeeze(-1)
|
loss = -mx.take_along_axis(inputs, targets[..., None], axis).squeeze(-1)
|
||||||
|
|
||||||
return _reduce(loss, reduction)
|
return _reduce(loss, reduction)
|
||||||
|
|
||||||
|
|
||||||
def kl_div_loss(
|
def kl_div_loss(
|
||||||
logits: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
|
inputs: mx.array, targets: mx.array, axis: int = -1, reduction: str = "none"
|
||||||
) -> mx.array:
|
) -> mx.array:
|
||||||
"""
|
"""
|
||||||
Computes the Kullback-Leibler divergence loss between logits and targets.
|
Computes the Kullback-Leibler divergence loss between targets and the
|
||||||
|
inputs.
|
||||||
|
|
||||||
|
Computes the following when ``reduction == 'none'``:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
mx.exp(targets) * (targets - inputs).sum(axis)
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
logits (mx.array): Logits for the distribution p.
|
inputs (mx.array): Log probabilities for the predicted distribution.
|
||||||
targets (mx.array): Log probabilities for the distribution q.
|
targets (mx.array): Log probabilities for the target distribution.
|
||||||
axis (int, optional): The axis over which to compute softmax. Default: ``-1``.
|
axis (int, optional): The distribution axis. Default: ``-1``.
|
||||||
reduction (str, optional): Specifies the reduction to apply to the output:
|
reduction (str, optional): Specifies the reduction to apply to the output:
|
||||||
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
|
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
mx.array: The computed Kullback-Leibler divergence loss.
|
mx.array: The computed Kullback-Leibler divergence loss.
|
||||||
"""
|
"""
|
||||||
loss = mx.sum(mx.exp(targets) * (targets - logits), axis)
|
loss = mx.sum(mx.exp(targets) * (targets - inputs), axis)
|
||||||
|
|
||||||
return _reduce(loss, reduction)
|
return _reduce(loss, reduction)
|
||||||
|
|
||||||
|
@ -50,7 +50,7 @@ class TestNN(mlx_tests.MLXTestCase):
|
|||||||
# Test with reduction 'none'
|
# Test with reduction 'none'
|
||||||
losses_none = nn.losses.mse_loss(predictions, targets, reduction="none")
|
losses_none = nn.losses.mse_loss(predictions, targets, reduction="none")
|
||||||
expected_none = mx.array([0.04, 0.01, 0.01, 0.04])
|
expected_none = mx.array([0.04, 0.01, 0.01, 0.04])
|
||||||
self.assertTrue(mx.array_equal(losses_none, expected_none))
|
self.assertTrue(mx.allclose(losses_none, expected_none))
|
||||||
|
|
||||||
# Test with reduction 'mean'
|
# Test with reduction 'mean'
|
||||||
losses_mean = nn.losses.mse_loss(predictions, targets, reduction="mean")
|
losses_mean = nn.losses.mse_loss(predictions, targets, reduction="mean")
|
||||||
@ -82,23 +82,23 @@ class TestNN(mlx_tests.MLXTestCase):
|
|||||||
self.assertEqual(losses_sum, expected_sum)
|
self.assertEqual(losses_sum, expected_sum)
|
||||||
|
|
||||||
def test_kl_div_loss(self):
|
def test_kl_div_loss(self):
|
||||||
p_logits = mx.array([[1.0, 2.0], [0.5, 1.0]])
|
p_logits = mx.log(mx.array([[0.5, 0.5], [0.8, 0.2]]))
|
||||||
q_logits = mx.array([[0.8, 1.5], [0.4, 1.2]])
|
q_logits = mx.log(mx.array([[0.5, 0.5], [0.2, 0.8]]))
|
||||||
|
|
||||||
# Test with reduction 'none'
|
# Test with reduction 'none'
|
||||||
losses_none = nn.losses.kl_div_loss(p_logits, q_logits, reduction="none")
|
losses_none = nn.losses.kl_div_loss(p_logits, q_logits, reduction="none")
|
||||||
expected_none = mx.array([0.22314353, 0.09966799])
|
expected_none = mx.array([0.0, 0.831777])
|
||||||
self.assertTrue(mx.array_equal(losses_none, expected_none))
|
self.assertTrue(mx.allclose(losses_none, expected_none))
|
||||||
|
|
||||||
# Test with reduction 'mean'
|
# Test with reduction 'mean'
|
||||||
losses_mean = nn.losses.kl_div_loss(p_logits, q_logits, reduction="mean")
|
losses_mean = nn.losses.kl_div_loss(p_logits, q_logits, reduction="mean")
|
||||||
expected_mean = mx.mean(expected_none)
|
expected_mean = mx.mean(expected_none)
|
||||||
self.assertEqual(losses_mean, expected_mean)
|
self.assertTrue(mx.allclose(losses_mean, expected_mean))
|
||||||
|
|
||||||
# Test with reduction 'sum'
|
# Test with reduction 'sum'
|
||||||
losses_sum = nn.losses.kl_div_loss(p_logits, q_logits, reduction="sum")
|
losses_sum = nn.losses.kl_div_loss(p_logits, q_logits, reduction="sum")
|
||||||
expected_sum = mx.sum(expected_none)
|
expected_sum = mx.sum(expected_none)
|
||||||
self.assertEqual(losses_sum, expected_sum)
|
self.assertTrue(mx.allclose(losses_sum, expected_sum))
|
||||||
|
|
||||||
def test_gelu(self):
|
def test_gelu(self):
|
||||||
inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]
|
inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]
|
||||||
|
Loading…
Reference in New Issue
Block a user