Winograd Update for Small batches (#1803)

* Build in padding to Winograd kernels
* Add new fused Winograd kernel
* Enable weight flipping in Winograd kernels
This commit is contained in:
Jagrit Digani
2025-02-14 13:08:13 -08:00
committed by GitHub
parent 7aea5b1895
commit 2dc307f2e6
4 changed files with 505 additions and 86 deletions

View File

@@ -533,6 +533,45 @@ void implicit_gemm_conv_2D_general_gpu(
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
void winograd_conv_2D_fused_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<2>& conv_params,
std::vector<array>& copies_w) {
int O_c = conv_params.O;
int C_c = conv_params.C;
int N_tiles_n = conv_params.N;
int N_tiles_h = (conv_params.oS[0] + 1) / 2;
int N_tiles_w = (conv_params.oS[1] + 1) / 2;
int N_tiles = N_tiles_n * N_tiles_h * N_tiles_w;
int bc = 32;
int wm = 4;
int wn = 1;
std::ostringstream kname;
kname << "winograd_conv_2d_fused_" << type_to_name(out) << "_flip"
<< conv_params.flip;
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_input_array(wt, 1);
compute_encoder.set_output_array(out, 2);
compute_encoder.set_bytes(conv_params, 3);
MTL::Size group_dims = MTL::Size(8, 8, 2);
MTL::Size grid_dims =
MTL::Size(O_c / 8, (N_tiles_h * N_tiles_w) / 8, N_tiles_n);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
void winograd_conv_2D_gpu(
const Stream& s,
metal::Device& d,
@@ -541,67 +580,6 @@ void winograd_conv_2D_gpu(
array out,
const MLXConvParams<2>& conv_params,
std::vector<array>& copies_w) {
Shape padded_shape = {
conv_params.N,
conv_params.iS[0] + 2 * conv_params.pad[0],
conv_params.iS[1] + 2 * conv_params.pad[1],
conv_params.C};
padded_shape[1] = 6 * ((padded_shape[1] - 2 + 5) / 6) + 2;
padded_shape[2] = 6 * ((padded_shape[2] - 2 + 5) / 6) + 2;
array in_padded(std::move(padded_shape), in.dtype(), nullptr, {});
// Fill with zeros
array zero_arr = array(0, in.dtype());
fill_gpu(zero_arr, in_padded, s);
copies_w.push_back(zero_arr);
// Pick input slice from padded
size_t data_offset = conv_params.pad[0] * in_padded.strides()[1] +
conv_params.pad[1] * in_padded.strides()[2];
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
in_padded.strides(),
in_padded.flags(),
in_padded_slice.size(),
data_offset);
// Copy input values into the slice
copy_gpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, s);
copies_w.push_back(in_padded_slice);
copies_w.push_back(in_padded);
MLXConvParams<2> conv_params_updated{
/* const int N = */ static_cast<int>(in_padded.shape(0)),
/* const int C = */ static_cast<int>(in_padded.shape(3)),
/* const int O = */ static_cast<int>(wt.shape(0)),
/* const int iS[NDIM] = */
{static_cast<int>(in_padded.shape(1)),
static_cast<int>(in_padded.shape(2))},
/* const int wS[NDIM] = */
{static_cast<int>(wt.shape(1)), static_cast<int>(wt.shape(2))},
/* const int oS[NDIM] = */
{static_cast<int>(out.shape(1)), static_cast<int>(out.shape(2))},
/* const int str[NDIM] = */ {1, 1},
/* const int pad[NDIM] = */ {0, 0},
/* const int kdil[NDIM] = */ {1, 1},
/* const int idil[NDIM] = */ {1, 1},
/* const size_t in_strides[NDIM + 2] = */
{in_padded.strides()[0],
in_padded.strides()[1],
in_padded.strides()[2],
in_padded.strides()[3]},
/* const size_t wt_strides[NDIM + 2] = */
{wt.strides()[0], wt.strides()[1], wt.strides()[2], wt.strides()[3]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0], out.strides()[1], out.strides()[2], out.strides()[3]},
/* const int groups = */ 1,
/* const bool flip = */ false,
};
int O_c = conv_params.O;
int C_c = conv_params.C;
@@ -620,7 +598,7 @@ void winograd_conv_2D_gpu(
int bo = 4;
std::ostringstream kname;
kname << "winograd_conv_2d_weight_transform_" << type_to_name(out) << "_bc"
<< bc;
<< bc << "_flip" << conv_params.flip;
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder.set_compute_pipeline_state(kernel);
@@ -653,10 +631,10 @@ void winograd_conv_2D_gpu(
auto kernel = d.get_kernel(kname.str());
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in_padded, 0);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(inp_wg, 1);
compute_encoder.set_bytes(conv_params_updated, 2);
compute_encoder.set_bytes(conv_params, 2);
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(N_tiles_w, N_tiles_h, N_tiles_n);
@@ -703,7 +681,7 @@ void winograd_conv_2D_gpu(
compute_encoder.set_input_array(out_wg, 0);
compute_encoder.set_output_array(out, 1);
compute_encoder.set_bytes(conv_params_updated, 2);
compute_encoder.set_bytes(conv_params, 2);
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(N_tiles_w, N_tiles_h, N_tiles_n);
@@ -767,14 +745,18 @@ void conv_2D_gpu(
}
// Direct to winograd conv
bool inp_large =
bool img_large =
(conv_params.N * conv_params.iS[0] * conv_params.iS[1]) >= 1ul << 12;
bool channels_large = (conv_params.C + conv_params.O) >= 256;
if (!flip && is_stride_one && is_kdil_one && is_idil_one &&
conv_params.wS[0] == 3 && conv_params.wS[1] == 3 &&
conv_params.C % 32 == 0 && conv_params.O % 32 == 0 && inp_large &&
channels_large) {
return winograd_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
if (conv_params.wS[0] == 3 && conv_params.wS[1] == 3 &&
conv_params.C % 32 == 0 && conv_params.O % 32 == 0 && is_stride_one &&
is_kdil_one && is_idil_one) {
if (img_large && channels_large) {
return winograd_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
}
if (conv_params.N <= 1) {
return winograd_conv_2D_fused_gpu(s, d, in, wt, out, conv_params, copies);
}
}
// Direct to implicit gemm conv
@@ -876,8 +858,40 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
wt = arr_copy;
}
// Check for 1x1 conv
auto is_one = [](int x) { return x == 1; };
auto is_zero = [](int x) { return x == 0; };
if (groups_ == 1 && (wt.shape(0) * wt.shape(-1) == wt.size()) &&
std::all_of(wt.shape().begin() + 1, wt.shape().end() - 1, is_one) &&
std::all_of(kernel_strides_.begin(), kernel_strides_.end(), is_one) &&
std::all_of(input_dilation_.begin(), input_dilation_.end(), is_one) &&
std::all_of(kernel_dilation_.begin(), kernel_dilation_.end(), is_one) &&
std::all_of(padding_.begin(), padding_.end(), is_zero)) {
std::vector<array> empty_copies;
steel_matmul_regular(
s,
d,
/*a = */ in,
/*b = */ wt,
/*c = */ out,
/*M = */ in.size() / in.shape(-1),
/*N = */ wt.shape(0),
/*K = */ in.shape(-1),
/*batch_size_out = */ 1,
/*lda = */ in.shape(-1),
/*ldb = */ wt.shape(-1),
/*ldd = */ wt.shape(0),
/*transpose_a = */ false,
/*transpose_b = */ true,
/*batch_shape = */ {1},
/*batch_strides = */ {1},
/*A_batch_stride = */ 0,
/*B_batch_stride = */ 0,
/*matrix_stride_out = */ 0,
/*copies = */ empty_copies);
}
// 3D conv
if (out.ndim() == 5) {
else if (out.ndim() == 5) {
conv_3D_gpu(
s,
d,