Feature Addition: Encoder-Decoder Transformer Architecture (#50)

* Implemented decoder-transformer-layer, decoder-transformer  and introduce encoder-decoder transformer

* added relu layer

* add src, tgt, memory mask

---------

Co-authored-by: rushyam <rushyam@rushyams-MacBook-Air.local>
This commit is contained in:
rushyam 2023-12-07 21:07:36 +05:30 committed by GitHub
parent dfbc52ce56
commit 2e126aeb7e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,7 +1,7 @@
# Copyright © 2023 Apple Inc.
import math
from typing import Optional
from typing import Optional, Any
import mlx.core as mx
from mlx.nn.layers.base import Module
@ -136,3 +136,85 @@ class TransformerEncoder(Module):
x = self.ln(x)
return x
class TransformerDecoderLayer(Module):
def __init__(self, dims: int, num_heads: int, mlp_dims: Optional[int] = None):
super().__init__()
mlp_dims = mlp_dims or dims * 4
self.self_attention = MultiHeadAttention(dims, num_heads)
self.cross_attention = MultiHeadAttention(dims, num_heads)
self.ln1 = LayerNorm(dims)
self.ln2 = LayerNorm(dims)
self.ln3 = LayerNorm(dims)
self.linear1 = Linear(dims, mlp_dims)
self.linear2 = Linear(mlp_dims, dims)
def __call__(self, x, memory, x_mask, memory_mask):
y = self.ln1(x)
y = self.self_attention(y, y, y, x_mask)
x = x + y
y = self.ln2(x)
y = self.cross_attention(x, memory, memory, memory_mask)
x = x + y
y = self.ln3(x)
y = self.linear1(y)
y = mx.maximum(y, 0)
y = self.linear2(y)
x = x + y
return x
class TransformerDecoder(Module):
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
):
super().__init__()
self.layers = [
TransformerDecoderLayer(dims, num_heads, mlp_dims)
for i in range(num_layers)
]
self.ln = LayerNorm(dims)
def __call__(self, x, memory, x_mask, memory_mask):
for l in self.layers:
x = l(x, memory, x_mask, memory_mask)
x = self.ln(x)
return x
class Transformer(Module):
def __init__(
self,
dims: int = 512,
num_heads: int = 8,
num_encoder_layers: int = 6,
num_decoder_layers: int = 6,
mlp_dims: Optional[int] = None,
custom_encoder: Optional[Any] = None,
custom_decoder: Optional[Any] = None,
):
super().__init__()
if custom_encoder is not None:
self.encoder = custom_encoder
else:
self.encoder = TransformerEncoder(
num_encoder_layers, dims, num_heads, mlp_dims
)
if custom_decoder is not None:
self.decoder = custom_decoder
else:
self.decoder = TransformerDecoder(
num_decoder_layers, dims, num_heads, mlp_dims
)
def __call__(self, src, tgt, src_mask, tgt_mask, memory_mask):
memory = self.encoder(src, src_mask)
output = self.decoder(tgt, memory, tgt_mask, memory_mask)
return output