mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-28 21:21:21 +08:00
Feature Addition: Encoder-Decoder Transformer Architecture (#50)
* Implemented decoder-transformer-layer, decoder-transformer and introduce encoder-decoder transformer * added relu layer * add src, tgt, memory mask --------- Co-authored-by: rushyam <rushyam@rushyams-MacBook-Air.local>
This commit is contained in:
parent
dfbc52ce56
commit
2e126aeb7e
@ -1,7 +1,7 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import math
|
||||
from typing import Optional
|
||||
from typing import Optional, Any
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx.nn.layers.base import Module
|
||||
@ -136,3 +136,85 @@ class TransformerEncoder(Module):
|
||||
x = self.ln(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class TransformerDecoderLayer(Module):
|
||||
def __init__(self, dims: int, num_heads: int, mlp_dims: Optional[int] = None):
|
||||
super().__init__()
|
||||
mlp_dims = mlp_dims or dims * 4
|
||||
self.self_attention = MultiHeadAttention(dims, num_heads)
|
||||
self.cross_attention = MultiHeadAttention(dims, num_heads)
|
||||
self.ln1 = LayerNorm(dims)
|
||||
self.ln2 = LayerNorm(dims)
|
||||
self.ln3 = LayerNorm(dims)
|
||||
self.linear1 = Linear(dims, mlp_dims)
|
||||
self.linear2 = Linear(mlp_dims, dims)
|
||||
|
||||
def __call__(self, x, memory, x_mask, memory_mask):
|
||||
y = self.ln1(x)
|
||||
y = self.self_attention(y, y, y, x_mask)
|
||||
x = x + y
|
||||
|
||||
y = self.ln2(x)
|
||||
y = self.cross_attention(x, memory, memory, memory_mask)
|
||||
x = x + y
|
||||
|
||||
y = self.ln3(x)
|
||||
y = self.linear1(y)
|
||||
y = mx.maximum(y, 0)
|
||||
y = self.linear2(y)
|
||||
x = x + y
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class TransformerDecoder(Module):
|
||||
def __init__(
|
||||
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
|
||||
):
|
||||
super().__init__()
|
||||
self.layers = [
|
||||
TransformerDecoderLayer(dims, num_heads, mlp_dims)
|
||||
for i in range(num_layers)
|
||||
]
|
||||
self.ln = LayerNorm(dims)
|
||||
|
||||
def __call__(self, x, memory, x_mask, memory_mask):
|
||||
for l in self.layers:
|
||||
x = l(x, memory, x_mask, memory_mask)
|
||||
x = self.ln(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Transformer(Module):
|
||||
def __init__(
|
||||
self,
|
||||
dims: int = 512,
|
||||
num_heads: int = 8,
|
||||
num_encoder_layers: int = 6,
|
||||
num_decoder_layers: int = 6,
|
||||
mlp_dims: Optional[int] = None,
|
||||
custom_encoder: Optional[Any] = None,
|
||||
custom_decoder: Optional[Any] = None,
|
||||
):
|
||||
super().__init__()
|
||||
if custom_encoder is not None:
|
||||
self.encoder = custom_encoder
|
||||
else:
|
||||
self.encoder = TransformerEncoder(
|
||||
num_encoder_layers, dims, num_heads, mlp_dims
|
||||
)
|
||||
|
||||
if custom_decoder is not None:
|
||||
self.decoder = custom_decoder
|
||||
else:
|
||||
self.decoder = TransformerDecoder(
|
||||
num_decoder_layers, dims, num_heads, mlp_dims
|
||||
)
|
||||
|
||||
def __call__(self, src, tgt, src_mask, tgt_mask, memory_mask):
|
||||
memory = self.encoder(src, src_mask)
|
||||
output = self.decoder(tgt, memory, tgt_mask, memory_mask)
|
||||
|
||||
return output
|
||||
|
Loading…
Reference in New Issue
Block a user