Add tile op (#438)

This commit is contained in:
Diogo 2024-01-13 02:03:16 -05:00 committed by GitHub
parent 1b71487e1f
commit 2e29d0815b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 105 additions and 3 deletions

View File

@ -10,7 +10,7 @@ MLX was developed with contributions from the following individuals:
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops. - Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops.
- Juarez Bochi: Fixed bug in cross attention. - Juarez Bochi: Fixed bug in cross attention.
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example. - Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer` and safetensor support - Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile` and safetensor support
- Gabrijel Boduljak: Added `mlx.core.linalg`, implemented `norm` method and `InstanceNorm` layer. - Gabrijel Boduljak: Added `mlx.core.linalg`, implemented `norm` method and `InstanceNorm` layer.
<a href="https://github.com/ml-explore/mlx/graphs/contributors"> <a href="https://github.com/ml-explore/mlx/graphs/contributors">

View File

@ -753,6 +753,36 @@ array repeat(const array& arr, int repeats, StreamOrDevice s) {
return repeat(flatten(arr, s), repeats, 0, s); return repeat(flatten(arr, s), repeats, 0, s);
} }
array tile(
const array& arr,
std::vector<int> reps,
StreamOrDevice s /* = {} */) {
auto shape = arr.shape();
if (reps.size() < shape.size()) {
reps.insert(reps.begin(), shape.size() - reps.size(), 1);
}
if (reps.size() > shape.size()) {
shape.insert(shape.begin(), reps.size() - shape.size(), 1);
}
std::vector<int> expand_shape;
std::vector<int> broad_shape;
std::vector<int> final_shape;
for (int i = 0; i < shape.size(); i++) {
if (reps[i] != 1) {
expand_shape.push_back(1);
broad_shape.push_back(reps[i]);
}
expand_shape.push_back(shape[i]);
broad_shape.push_back(shape[i]);
final_shape.push_back(reps[i] * shape[i]);
}
auto x = reshape(arr, expand_shape, s);
x = broadcast_to(x, broad_shape, s);
return reshape(x, final_shape, s);
}
/** Pad an array with a constant value */ /** Pad an array with a constant value */
array pad( array pad(
const array& a, const array& a,

View File

@ -218,6 +218,8 @@ array stack(const std::vector<array>& arrays, StreamOrDevice s = {});
array repeat(const array& arr, int repeats, int axis, StreamOrDevice s = {}); array repeat(const array& arr, int repeats, int axis, StreamOrDevice s = {});
array repeat(const array& arr, int repeats, StreamOrDevice s = {}); array repeat(const array& arr, int repeats, StreamOrDevice s = {});
array tile(const array& arr, std::vector<int> reps, StreamOrDevice s = {});
/** Permutes the dimensions according to the given axes. */ /** Permutes the dimensions according to the given axes. */
array transpose(const array& a, std::vector<int> axes, StreamOrDevice s = {}); array transpose(const array& a, std::vector<int> axes, StreamOrDevice s = {});
inline array transpose( inline array transpose(

View File

@ -3394,4 +3394,30 @@ void init_ops(py::module_& m) {
Returns: Returns:
result (array): The outer product. result (array): The outer product.
)pbdoc"); )pbdoc");
m.def(
"tile",
[](const array& a, const IntOrVec& reps, StreamOrDevice s) {
if (auto pv = std::get_if<int>(&reps); pv) {
return tile(a, {*pv}, s);
} else {
return tile(a, std::get<std::vector<int>>(reps), s);
}
},
"a"_a,
"reps"_a,
py::pos_only(),
py::kw_only(),
"stream"_a = none,
R"pbdoc(
tile(a: array, reps: Union[int, List[int]], /, *, stream: Union[None, Stream, Device] = None) -> array
Construct an array by repeating ``a`` the number of times given by ``reps``.
Args:
a (array): Input array
reps (int or list(int)): The number of times to repeat ``a`` along each axis.
Returns:
result (array): The tiled array.
)pbdoc");
} }

View File

@ -24,9 +24,10 @@ class MLXTestCase(unittest.TestCase):
def tearDown(self): def tearDown(self):
mx.set_default_device(self.default) mx.set_default_device(self.default)
# Note if a tuple is passed into args, it will be considered a shape request and convert to a mx.random.normal with the shape matching the tuple
def assertCmpNumpy( def assertCmpNumpy(
self, self,
shape: List[Union[Tuple[int], Any]], args: List[Union[Tuple[int], Any]],
mx_fn: Callable[..., mx.array], mx_fn: Callable[..., mx.array],
np_fn: Callable[..., np.array], np_fn: Callable[..., np.array],
atol=1e-2, atol=1e-2,
@ -37,7 +38,7 @@ class MLXTestCase(unittest.TestCase):
assert dtype != mx.bfloat16, "numpy does not support bfloat16" assert dtype != mx.bfloat16, "numpy does not support bfloat16"
args = [ args = [
mx.random.normal(s, dtype=dtype) if isinstance(s, Tuple) else s mx.random.normal(s, dtype=dtype) if isinstance(s, Tuple) else s
for s in shape for s in args
] ]
mx_res = mx_fn(*args, **kwargs) mx_res = mx_fn(*args, **kwargs)
np_res = np_fn( np_res = np_fn(

View File

@ -1634,6 +1634,23 @@ class TestOps(mlx_tests.MLXTestCase):
np.allclose(np_out[0], mx_out[0]), msg=f"Shapes {s1} {s2}, Type {t}" np.allclose(np_out[0], mx_out[0]), msg=f"Shapes {s1} {s2}, Type {t}"
) )
def test_tile(self):
self.assertCmpNumpy([(2,), [2]], mx.tile, np.tile)
self.assertCmpNumpy([(2, 3, 4), [2]], mx.tile, np.tile)
self.assertCmpNumpy([(2, 3, 4), [2, 1]], mx.tile, np.tile)
self.assertCmpNumpy(
[
(2, 3, 4),
[
2,
2,
],
],
mx.tile,
np.tile,
)
self.assertCmpNumpy([(3,), [2, 2, 2]], mx.tile, np.tile)
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()

View File

@ -2343,6 +2343,32 @@ TEST_CASE("test repeat") {
CHECK_THROWS_AS(repeat(data_3, -3, 0), std::invalid_argument); CHECK_THROWS_AS(repeat(data_3, -3, 0), std::invalid_argument);
} }
TEST_CASE("tile") {
auto x = array({1, 2, 3}, {3});
auto y = tile(x, {2});
auto expected = array({1, 2, 3, 1, 2, 3}, {6});
CHECK(array_equal(y, expected).item<bool>());
x = array({1, 2, 3, 4}, {2, 2});
y = tile(x, {2});
expected = array({1, 2, 1, 2, 3, 4, 3, 4}, {2, 4});
CHECK(array_equal(y, expected).item<bool>());
x = array({1, 2, 3, 4}, {2, 2});
y = tile(x, {4, 1});
expected = array({1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}, {8, 2});
CHECK(array_equal(y, expected).item<bool>());
x = array({1, 2, 3, 4}, {2, 2});
y = tile(x, {2, 2});
expected = array({1, 2, 1, 2, 3, 4, 3, 4, 1, 2, 1, 2, 3, 4, 3, 4}, {4, 4});
CHECK(array_equal(y, expected).item<bool>());
x = array({1, 2, 3}, {3});
y = tile(x, {2, 2, 2});
expected = array(
{1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3},
{2, 2, 6});
CHECK(array_equal(y, expected).item<bool>());
}
TEST_CASE("tensordot") { TEST_CASE("tensordot") {
auto x = reshape(arange(60.), {3, 4, 5}); auto x = reshape(arange(60.), {3, 4, 5});
auto y = reshape(arange(24.), {4, 3, 2}); auto y = reshape(arange(24.), {4, 3, 2});