mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-25 01:41:17 +08:00
Add tile op (#438)
This commit is contained in:
parent
1b71487e1f
commit
2e29d0815b
@ -10,7 +10,7 @@ MLX was developed with contributions from the following individuals:
|
||||
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops.
|
||||
- Juarez Bochi: Fixed bug in cross attention.
|
||||
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
|
||||
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer` and safetensor support
|
||||
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile` and safetensor support
|
||||
- Gabrijel Boduljak: Added `mlx.core.linalg`, implemented `norm` method and `InstanceNorm` layer.
|
||||
|
||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||
|
30
mlx/ops.cpp
30
mlx/ops.cpp
@ -753,6 +753,36 @@ array repeat(const array& arr, int repeats, StreamOrDevice s) {
|
||||
return repeat(flatten(arr, s), repeats, 0, s);
|
||||
}
|
||||
|
||||
array tile(
|
||||
const array& arr,
|
||||
std::vector<int> reps,
|
||||
StreamOrDevice s /* = {} */) {
|
||||
auto shape = arr.shape();
|
||||
if (reps.size() < shape.size()) {
|
||||
reps.insert(reps.begin(), shape.size() - reps.size(), 1);
|
||||
}
|
||||
if (reps.size() > shape.size()) {
|
||||
shape.insert(shape.begin(), reps.size() - shape.size(), 1);
|
||||
}
|
||||
|
||||
std::vector<int> expand_shape;
|
||||
std::vector<int> broad_shape;
|
||||
std::vector<int> final_shape;
|
||||
for (int i = 0; i < shape.size(); i++) {
|
||||
if (reps[i] != 1) {
|
||||
expand_shape.push_back(1);
|
||||
broad_shape.push_back(reps[i]);
|
||||
}
|
||||
expand_shape.push_back(shape[i]);
|
||||
broad_shape.push_back(shape[i]);
|
||||
final_shape.push_back(reps[i] * shape[i]);
|
||||
}
|
||||
|
||||
auto x = reshape(arr, expand_shape, s);
|
||||
x = broadcast_to(x, broad_shape, s);
|
||||
return reshape(x, final_shape, s);
|
||||
}
|
||||
|
||||
/** Pad an array with a constant value */
|
||||
array pad(
|
||||
const array& a,
|
||||
|
@ -218,6 +218,8 @@ array stack(const std::vector<array>& arrays, StreamOrDevice s = {});
|
||||
array repeat(const array& arr, int repeats, int axis, StreamOrDevice s = {});
|
||||
array repeat(const array& arr, int repeats, StreamOrDevice s = {});
|
||||
|
||||
array tile(const array& arr, std::vector<int> reps, StreamOrDevice s = {});
|
||||
|
||||
/** Permutes the dimensions according to the given axes. */
|
||||
array transpose(const array& a, std::vector<int> axes, StreamOrDevice s = {});
|
||||
inline array transpose(
|
||||
|
@ -3394,4 +3394,30 @@ void init_ops(py::module_& m) {
|
||||
Returns:
|
||||
result (array): The outer product.
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"tile",
|
||||
[](const array& a, const IntOrVec& reps, StreamOrDevice s) {
|
||||
if (auto pv = std::get_if<int>(&reps); pv) {
|
||||
return tile(a, {*pv}, s);
|
||||
} else {
|
||||
return tile(a, std::get<std::vector<int>>(reps), s);
|
||||
}
|
||||
},
|
||||
"a"_a,
|
||||
"reps"_a,
|
||||
py::pos_only(),
|
||||
py::kw_only(),
|
||||
"stream"_a = none,
|
||||
R"pbdoc(
|
||||
tile(a: array, reps: Union[int, List[int]], /, *, stream: Union[None, Stream, Device] = None) -> array
|
||||
|
||||
Construct an array by repeating ``a`` the number of times given by ``reps``.
|
||||
|
||||
Args:
|
||||
a (array): Input array
|
||||
reps (int or list(int)): The number of times to repeat ``a`` along each axis.
|
||||
|
||||
Returns:
|
||||
result (array): The tiled array.
|
||||
)pbdoc");
|
||||
}
|
||||
|
@ -24,9 +24,10 @@ class MLXTestCase(unittest.TestCase):
|
||||
def tearDown(self):
|
||||
mx.set_default_device(self.default)
|
||||
|
||||
# Note if a tuple is passed into args, it will be considered a shape request and convert to a mx.random.normal with the shape matching the tuple
|
||||
def assertCmpNumpy(
|
||||
self,
|
||||
shape: List[Union[Tuple[int], Any]],
|
||||
args: List[Union[Tuple[int], Any]],
|
||||
mx_fn: Callable[..., mx.array],
|
||||
np_fn: Callable[..., np.array],
|
||||
atol=1e-2,
|
||||
@ -37,7 +38,7 @@ class MLXTestCase(unittest.TestCase):
|
||||
assert dtype != mx.bfloat16, "numpy does not support bfloat16"
|
||||
args = [
|
||||
mx.random.normal(s, dtype=dtype) if isinstance(s, Tuple) else s
|
||||
for s in shape
|
||||
for s in args
|
||||
]
|
||||
mx_res = mx_fn(*args, **kwargs)
|
||||
np_res = np_fn(
|
||||
|
@ -1634,6 +1634,23 @@ class TestOps(mlx_tests.MLXTestCase):
|
||||
np.allclose(np_out[0], mx_out[0]), msg=f"Shapes {s1} {s2}, Type {t}"
|
||||
)
|
||||
|
||||
def test_tile(self):
|
||||
self.assertCmpNumpy([(2,), [2]], mx.tile, np.tile)
|
||||
self.assertCmpNumpy([(2, 3, 4), [2]], mx.tile, np.tile)
|
||||
self.assertCmpNumpy([(2, 3, 4), [2, 1]], mx.tile, np.tile)
|
||||
self.assertCmpNumpy(
|
||||
[
|
||||
(2, 3, 4),
|
||||
[
|
||||
2,
|
||||
2,
|
||||
],
|
||||
],
|
||||
mx.tile,
|
||||
np.tile,
|
||||
)
|
||||
self.assertCmpNumpy([(3,), [2, 2, 2]], mx.tile, np.tile)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
@ -2343,6 +2343,32 @@ TEST_CASE("test repeat") {
|
||||
CHECK_THROWS_AS(repeat(data_3, -3, 0), std::invalid_argument);
|
||||
}
|
||||
|
||||
TEST_CASE("tile") {
|
||||
auto x = array({1, 2, 3}, {3});
|
||||
auto y = tile(x, {2});
|
||||
auto expected = array({1, 2, 3, 1, 2, 3}, {6});
|
||||
CHECK(array_equal(y, expected).item<bool>());
|
||||
x = array({1, 2, 3, 4}, {2, 2});
|
||||
y = tile(x, {2});
|
||||
expected = array({1, 2, 1, 2, 3, 4, 3, 4}, {2, 4});
|
||||
CHECK(array_equal(y, expected).item<bool>());
|
||||
x = array({1, 2, 3, 4}, {2, 2});
|
||||
y = tile(x, {4, 1});
|
||||
expected = array({1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}, {8, 2});
|
||||
CHECK(array_equal(y, expected).item<bool>());
|
||||
|
||||
x = array({1, 2, 3, 4}, {2, 2});
|
||||
y = tile(x, {2, 2});
|
||||
expected = array({1, 2, 1, 2, 3, 4, 3, 4, 1, 2, 1, 2, 3, 4, 3, 4}, {4, 4});
|
||||
CHECK(array_equal(y, expected).item<bool>());
|
||||
x = array({1, 2, 3}, {3});
|
||||
y = tile(x, {2, 2, 2});
|
||||
expected = array(
|
||||
{1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3},
|
||||
{2, 2, 6});
|
||||
CHECK(array_equal(y, expected).item<bool>());
|
||||
}
|
||||
|
||||
TEST_CASE("tensordot") {
|
||||
auto x = reshape(arange(60.), {3, 4, 5});
|
||||
auto y = reshape(arange(24.), {4, 3, 2});
|
||||
|
Loading…
Reference in New Issue
Block a user