Change layernorms to two pass algorithm (#2246)

This commit is contained in:
Angelos Katharopoulos 2025-06-06 13:34:56 -07:00 committed by GitHub
parent 24f89173d1
commit 2e8cf0b450
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 260 additions and 306 deletions

View File

@ -1,5 +1,7 @@
# Copyright © 2023-2024 Apple Inc.
from functools import partial
import mlx.core as mx
import mlx.nn as nn
from time_utils import time_fn
@ -18,51 +20,63 @@ def layer_norm(x, w, b, eps):
return y
def time_layer_norm():
def time_layer_norm(N, dt):
L = 1024
f1 = lambda x, w, b, y: (layer_norm(x, w, b, 1e-5) * y).sum()
f2 = lambda x, w, b, y: (mx.fast.layer_norm(x, w, b, 1e-5) * y).sum()
g1 = mx.grad(f1, argnums=(0, 1, 2))
g2 = mx.grad(f2, argnums=(0, 1, 2))
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
b = mx.random.uniform(shape=(4096,)).astype(mx.float16)
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
x = mx.random.uniform(shape=(8, L, N)).astype(dt)
w = mx.random.uniform(shape=(N,)).astype(dt)
b = mx.random.uniform(shape=(N,)).astype(dt)
y = mx.random.uniform(shape=(8, L, N)).astype(dt)
mx.eval(x, w, b, y)
def layer_norm_loop(g, x, w, b):
def layer_norm_loop(f, x, w, b):
for _ in range(32):
x = f(x, w, b)
return x
time_fn(layer_norm_loop, partial(layer_norm, eps=1e-5), x, w, b)
time_fn(layer_norm_loop, partial(mx.fast.layer_norm, eps=1e-5), x, w, b)
def layer_norm_grad_loop(g, x, w, b):
gx, gw, gb = x, w, b
for _ in range(32):
gx, gw, gb = g(gx, gw, gb, y)
return gx, gw, gb
time_fn(layer_norm_loop, g1, x, w, b)
time_fn(layer_norm_loop, g2, x, w, b)
time_fn(layer_norm_loop, mx.compile(g1), x, w, b)
time_fn(layer_norm_loop, mx.compile(g2), x, w, b)
time_fn(layer_norm_grad_loop, g1, x, w, b)
time_fn(layer_norm_grad_loop, g2, x, w, b)
time_fn(layer_norm_grad_loop, mx.compile(g1), x, w, b)
time_fn(layer_norm_grad_loop, mx.compile(g2), x, w, b)
f1 = lambda x, y: (layer_norm(x, None, None, 1e-5) * y).sum()
f2 = lambda x, y: (mx.fast.layer_norm(x, None, None, 1e-5) * y).sum()
g1 = mx.grad(f1, argnums=(0,))
g2 = mx.grad(f2, argnums=(0,))
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
b = mx.random.uniform(shape=(4096,)).astype(mx.float16)
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
x = mx.random.uniform(shape=(8, L, N)).astype(dt)
w = mx.random.uniform(shape=(N,)).astype(dt)
b = mx.random.uniform(shape=(N,)).astype(dt)
y = mx.random.uniform(shape=(8, L, N)).astype(dt)
mx.eval(x, w, b, y)
def layer_norm_loop(g, x):
def layer_norm_grad_x_loop(g, x):
gx = x
for _ in range(32):
gx = g(gx, y)
return gx
time_fn(layer_norm_loop, g1, x)
time_fn(layer_norm_loop, g2, x)
time_fn(layer_norm_loop, mx.compile(g1), x)
time_fn(layer_norm_loop, mx.compile(g2), x)
time_fn(layer_norm_grad_x_loop, g1, x)
time_fn(layer_norm_grad_x_loop, g2, x)
time_fn(layer_norm_grad_x_loop, mx.compile(g1), x)
time_fn(layer_norm_grad_x_loop, mx.compile(g2), x)
if __name__ == "__main__":
time_layer_norm()
for dt in [mx.float32, mx.float16, mx.bfloat16]:
for n in [1024, 2048, 4096, 8192, 8192 + 1024]:
print(dt, n)
time_layer_norm(n, dt)

View File

@ -9,7 +9,41 @@ using namespace metal;
constant bool has_w [[function_constant(20)]];
template <typename T, int N_READS = RMS_N_READS>
template <int N = 1>
inline void initialize_buffer(
threadgroup float* xs,
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
if (simd_group_id == 0) {
for (int i = 0; i < N; i++) {
xs[N * simd_lane_id + i] = 0;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
template <int N = 1>
inline void threadgroup_sum(
thread float* x,
threadgroup float* xs,
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
for (int i = 0; i < N; i++) {
x[i] = simd_sum(x[i]);
}
if (simd_lane_id == 0) {
for (int i = 0; i < N; i++) {
xs[N * simd_group_id + i] = x[i];
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
for (int i = 0; i < N; i++) {
x[i] = xs[N * simd_lane_id + i];
x[i] = simd_sum(x[i]);
}
}
template <typename T, int N_READS = 8>
[[kernel]] void layer_norm_single_row(
const device T* x,
const device T* w,
@ -23,90 +57,71 @@ template <typename T, int N_READS = RMS_N_READS>
uint lid [[thread_position_in_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
float sumx = 0;
float sumx2 = 0;
float thread_x[N_READS];
constexpr int SIMD_SIZE = 32;
threadgroup float local_sumx[SIMD_SIZE];
threadgroup float local_sumx2[SIMD_SIZE];
threadgroup float local_mean[1];
threadgroup float local_normalizer[1];
// Initialize the registers and threadgroup memory
float thread_x[N_READS] = {0};
threadgroup float local_buffer[SIMD_SIZE] = {0};
initialize_buffer(local_buffer, simd_lane_id, simd_group_id);
// Advance the pointers
x += gid * size_t(axis_size) + lid * N_READS;
w += w_stride * lid * N_READS;
b += b_stride * lid * N_READS;
out += gid * size_t(axis_size) + lid * N_READS;
if (lid * N_READS + N_READS <= axis_size) {
// Compute some variables for reading writing etc
const bool safe = lid * N_READS + N_READS <= axis_size;
const int n = axis_size - lid * N_READS;
// Read the inputs
if (safe) {
for (int i = 0; i < N_READS; i++) {
thread_x[i] = x[i];
sumx2 += thread_x[i] * thread_x[i];
sumx += thread_x[i];
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((lid * N_READS + i) < axis_size) {
thread_x[i] = x[i];
sumx2 += thread_x[i] * thread_x[i];
sumx += thread_x[i];
}
for (int i = 0; i < n; i++) {
thread_x[i] = x[i];
}
}
sumx = simd_sum(sumx);
sumx2 = simd_sum(sumx2);
// Initialize shared memory
if (simd_group_id == 0) {
local_sumx[simd_lane_id] = 0;
local_sumx2[simd_lane_id] = 0;
// Compute the mean
float mean = 0;
for (int i = 0; i < N_READS; i++) {
mean += thread_x[i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup_sum(&mean, local_buffer, simd_lane_id, simd_group_id);
mean /= axis_size;
// Write simd accumulations into shared memory
if (simd_lane_id == 0) {
local_sumx[simd_group_id] = sumx;
local_sumx2[simd_group_id] = sumx2;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Accumulate over simd groups
if (simd_group_id == 0) {
sumx = simd_sum(local_sumx[simd_lane_id]);
sumx2 = simd_sum(local_sumx2[simd_lane_id]);
if (simd_lane_id == 0) {
float mean = sumx / axis_size;
float variance = sumx2 / axis_size - mean * mean;
local_mean[0] = mean;
local_normalizer[0] = metal::precise::rsqrt(variance + eps);
// Compute the normalizer
float normalizer = 0;
if (!safe) {
for (int i = n; i < N_READS; i++) {
thread_x[i] = mean;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float mean = local_mean[0];
float normalizer = local_normalizer[0];
for (int i = 0; i < N_READS; i++) {
thread_x[i] -= mean;
normalizer += thread_x[i] * thread_x[i];
}
threadgroup_sum(&normalizer, local_buffer, simd_lane_id, simd_group_id);
normalizer = metal::precise::rsqrt(normalizer / axis_size + eps);
// Write the outputs
out += gid * size_t(axis_size) + lid * N_READS;
if (lid * N_READS + N_READS <= axis_size) {
if (safe) {
for (int i = 0; i < N_READS; i++) {
thread_x[i] = (thread_x[i] - mean) * normalizer;
thread_x[i] *= normalizer;
out[i] = w[w_stride * i] * static_cast<T>(thread_x[i]) + b[b_stride * i];
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((lid * N_READS + i) < axis_size) {
thread_x[i] = (thread_x[i] - mean) * normalizer;
out[i] =
w[w_stride * i] * static_cast<T>(thread_x[i]) + b[b_stride * i];
}
for (int i = 0; i < n; i++) {
thread_x[i] *= normalizer;
out[i] = w[w_stride * i] * static_cast<T>(thread_x[i]) + b[b_stride * i];
}
}
}
template <typename T, int N_READS = RMS_N_READS>
template <typename T, int N_READS = 4>
[[kernel]] void layer_norm_looped(
const device T* x,
const device T* w,
@ -121,71 +136,52 @@ template <typename T, int N_READS = RMS_N_READS>
uint lsize [[threads_per_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
float sumx = 0;
float sumx2 = 0;
constexpr int SIMD_SIZE = 32;
threadgroup float local_sumx[SIMD_SIZE];
threadgroup float local_sumx2[SIMD_SIZE];
threadgroup float local_mean[1];
threadgroup float local_normalizer[1];
threadgroup float local_buffer[SIMD_SIZE];
initialize_buffer(local_buffer, simd_lane_id, simd_group_id);
x += gid * size_t(axis_size) + lid * N_READS;
w += w_stride * lid * N_READS;
b += b_stride * lid * N_READS;
// Compute the mean
float mean = 0;
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
if (r + lid * N_READS + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
float xi = x[i + r];
sumx2 += xi * xi;
sumx += xi;
mean += x[i + r];
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((r + lid * N_READS + i) < axis_size) {
float xi = x[i + r];
sumx2 += xi * xi;
sumx += xi;
mean += x[i + r];
}
}
}
}
threadgroup_sum(&mean, local_buffer, simd_lane_id, simd_group_id);
mean /= axis_size;
sumx = simd_sum(sumx);
sumx2 = simd_sum(sumx2);
// Initialize shared memory
if (simd_group_id == 0) {
local_sumx[simd_lane_id] = 0;
local_sumx2[simd_lane_id] = 0;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Write simd accumulations into shared memory
if (simd_lane_id == 0) {
local_sumx[simd_group_id] = sumx;
local_sumx2[simd_group_id] = sumx2;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Accumulate over simd groups
if (simd_group_id == 0) {
sumx = simd_sum(local_sumx[simd_lane_id]);
sumx2 = simd_sum(local_sumx2[simd_lane_id]);
if (simd_lane_id == 0) {
float mean = sumx / axis_size;
float variance = sumx2 / axis_size - mean * mean;
local_mean[0] = mean;
local_normalizer[0] = metal::precise::rsqrt(variance + eps);
// Compute the normalizer
float normalizer = 0;
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
if (r + lid * N_READS + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
float t = x[i + r] - mean;
normalizer += t * t;
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((r + lid * N_READS + i) < axis_size) {
float t = x[i + r] - mean;
normalizer += t * t;
}
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float mean = local_mean[0];
float normalizer = local_normalizer[0];
threadgroup_sum(&normalizer, local_buffer, simd_lane_id, simd_group_id);
normalizer = metal::precise::rsqrt(normalizer / axis_size + eps);
// Write the outputs
out += gid * size_t(axis_size) + lid * N_READS;
@ -208,7 +204,7 @@ template <typename T, int N_READS = RMS_N_READS>
}
}
template <typename T, int N_READS = RMS_N_READS>
template <typename T, int N_READS = 8>
[[kernel]] void vjp_layer_norm_single_row(
const device T* x,
const device T* w,
@ -222,133 +218,96 @@ template <typename T, int N_READS = RMS_N_READS>
uint lid [[thread_position_in_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
constexpr int SIMD_SIZE = 32;
// Advance the input pointers
x += gid * size_t(axis_size) + lid * N_READS;
g += gid * size_t(axis_size) + lid * N_READS;
w += w_stride * lid * N_READS;
// Allocate registers for the computation and accumulators
float thread_x[N_READS];
float thread_w[N_READS];
float thread_g[N_READS];
float sumx = 0;
float sumx2 = 0;
float sumwg = 0;
float sumwgx = 0;
// Initialize the registers and threadgroup memory
float thread_x[N_READS] = {0};
float thread_w[N_READS] = {0};
float thread_g[N_READS] = {0};
threadgroup float local_buffer[3 * SIMD_SIZE];
initialize_buffer<3>(local_buffer, simd_lane_id, simd_group_id);
constexpr int SIMD_SIZE = 32;
// Compute some variables for reading writing etc
const bool safe = lid * N_READS + N_READS <= axis_size;
const int n = axis_size - lid * N_READS;
threadgroup float local_sumx[SIMD_SIZE];
threadgroup float local_sumx2[SIMD_SIZE];
threadgroup float local_sumwg[SIMD_SIZE];
threadgroup float local_sumwgx[SIMD_SIZE];
threadgroup float local_mean[1];
threadgroup float local_normalizer[1];
threadgroup float local_meanwg[1];
threadgroup float local_meanwgx[1];
if (lid * N_READS + N_READS <= axis_size) {
// Read the inputs
if (safe) {
for (int i = 0; i < N_READS; i++) {
thread_x[i] = x[i];
thread_w[i] = w[i * w_stride];
thread_g[i] = g[i];
float wg = thread_w[i] * thread_g[i];
sumx += thread_x[i];
sumx2 += thread_x[i] * thread_x[i];
sumwg += wg;
sumwgx += wg * thread_x[i];
thread_w[i] = w[i * w_stride];
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((lid * N_READS + i) < axis_size) {
thread_x[i] = x[i];
thread_w[i] = w[i * w_stride];
thread_g[i] = g[i];
float wg = thread_w[i] * thread_g[i];
sumx += thread_x[i];
sumx2 += thread_x[i] * thread_x[i];
sumwg += wg;
sumwgx += wg * thread_x[i];
}
for (int i = 0; i < n; i++) {
thread_x[i] = x[i];
thread_g[i] = g[i];
thread_w[i] = w[i * w_stride];
}
}
sumx = simd_sum(sumx);
sumx2 = simd_sum(sumx2);
sumwg = simd_sum(sumwg);
sumwgx = simd_sum(sumwgx);
// Initialize shared memory
if (simd_group_id == 0) {
local_sumx[simd_lane_id] = 0;
local_sumx2[simd_lane_id] = 0;
local_sumwg[simd_lane_id] = 0;
local_sumwgx[simd_lane_id] = 0;
// Compute the mean
float mean = 0;
for (int i = 0; i < N_READS; i++) {
mean += thread_x[i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup_sum(&mean, local_buffer, simd_lane_id, simd_group_id);
mean /= axis_size;
// Write simd accumulations into shared memory
if (simd_lane_id == 0) {
local_sumx[simd_group_id] = sumx;
local_sumx2[simd_group_id] = sumx2;
local_sumwg[simd_group_id] = sumwg;
local_sumwgx[simd_group_id] = sumwgx;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Accumulate over simd groups
if (simd_group_id == 0) {
sumx = simd_sum(local_sumx[simd_lane_id]);
sumx2 = simd_sum(local_sumx2[simd_lane_id]);
sumwg = simd_sum(local_sumwg[simd_lane_id]);
sumwgx = simd_sum(local_sumwgx[simd_lane_id]);
if (simd_lane_id == 0) {
float mean = sumx / axis_size;
float variance = sumx2 / axis_size - mean * mean;
local_mean[0] = mean;
local_normalizer[0] = metal::precise::rsqrt(variance + eps);
local_meanwg[0] = sumwg / axis_size;
local_meanwgx[0] = sumwgx / axis_size;
// Compute the neccesary scaling factors using the mean
if (!safe) {
for (int i = n; i < N_READS; i++) {
thread_x[i] = mean;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float mean = local_mean[0];
float normalizer = local_normalizer[0];
float meanwg = local_meanwg[0];
float meanwgxc = local_meanwgx[0] - meanwg * mean;
float normalizer2 = normalizer * normalizer;
float factors[3] = {0};
constexpr int meanwg = 0;
constexpr int meanwgxc = 1;
constexpr int normalizer2 = 2;
for (int i = 0; i < N_READS; i++) {
thread_x[i] -= mean;
factors[meanwg] += thread_w[i] * thread_g[i];
factors[meanwgxc] += thread_w[i] * thread_g[i] * thread_x[i];
factors[normalizer2] += thread_x[i] * thread_x[i];
}
threadgroup_sum<3>(factors, local_buffer, simd_lane_id, simd_group_id);
factors[meanwg] /= axis_size;
factors[meanwgxc] /= axis_size;
factors[normalizer2] = 1 / (factors[normalizer2] / axis_size + eps);
float normalizer = metal::precise::sqrt(factors[normalizer2]);
// Write the outputs
gx += gid * size_t(axis_size) + lid * N_READS;
gw += gid * size_t(axis_size) + lid * N_READS;
if (lid * N_READS + N_READS <= axis_size) {
if (safe) {
for (int i = 0; i < N_READS; i++) {
thread_x[i] = (thread_x[i] - mean) * normalizer;
thread_x[i] *= normalizer;
gx[i] = static_cast<T>(
normalizer * (thread_w[i] * thread_g[i] - meanwg) -
thread_x[i] * meanwgxc * normalizer2);
normalizer * (thread_w[i] * thread_g[i] - factors[meanwg]) -
thread_x[i] * factors[meanwgxc] * factors[normalizer2]);
if (has_w) {
gw[i] = static_cast<T>(thread_g[i] * thread_x[i]);
}
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((lid * N_READS + i) < axis_size) {
thread_x[i] = (thread_x[i] - mean) * normalizer;
gx[i] = static_cast<T>(
normalizer * (thread_w[i] * thread_g[i] - meanwg) -
thread_x[i] * meanwgxc * normalizer2);
if (has_w) {
gw[i] = static_cast<T>(thread_g[i] * thread_x[i]);
}
for (int i = 0; i < n; i++) {
thread_x[i] *= normalizer;
gx[i] = static_cast<T>(
normalizer * (thread_w[i] * thread_g[i] - factors[meanwg]) -
thread_x[i] * factors[meanwgxc] * factors[normalizer2]);
if (has_w) {
gw[i] = static_cast<T>(thread_g[i] * thread_x[i]);
}
}
}
}
template <typename T, int N_READS = RMS_N_READS>
template <typename T, int N_READS = 4>
[[kernel]] void vjp_layer_norm_looped(
const device T* x,
const device T* w,
@ -363,102 +322,69 @@ template <typename T, int N_READS = RMS_N_READS>
uint lsize [[threads_per_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
constexpr int SIMD_SIZE = 32;
// Advance the input pointers
x += gid * size_t(axis_size) + lid * N_READS;
g += gid * size_t(axis_size) + lid * N_READS;
w += w_stride * lid * N_READS;
// Allocate registers for the accumulators
float sumx = 0;
float sumx2 = 0;
float sumwg = 0;
float sumwgx = 0;
constexpr int SIMD_SIZE = 32;
threadgroup float local_sumx[SIMD_SIZE];
threadgroup float local_sumx2[SIMD_SIZE];
threadgroup float local_sumwg[SIMD_SIZE];
threadgroup float local_sumwgx[SIMD_SIZE];
threadgroup float local_mean[1];
threadgroup float local_normalizer[1];
threadgroup float local_meanwg[1];
threadgroup float local_meanwgx[1];
threadgroup float local_buffer[3 * SIMD_SIZE];
initialize_buffer<3>(local_buffer, simd_lane_id, simd_group_id);
// Compute the mean
float mean = 0;
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
if (r + lid * N_READS + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
float xi = x[i + r];
float wi = w[(i + r) * w_stride];
float gi = g[i + r];
float wg = wi * gi;
sumx += xi;
sumx2 += xi * xi;
sumwg += wg;
sumwgx += wg * xi;
mean += x[i + r];
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((r + lid * N_READS + i) < axis_size) {
float xi = x[i + r];
float wi = w[(i + r) * w_stride];
float gi = g[i + r];
float wg = wi * gi;
sumx += xi;
sumx2 += xi * xi;
sumwg += wg;
sumwgx += wg * xi;
mean += x[i + r];
}
}
}
}
threadgroup_sum(&mean, local_buffer, simd_lane_id, simd_group_id);
mean /= axis_size;
sumx = simd_sum(sumx);
sumx2 = simd_sum(sumx2);
sumwg = simd_sum(sumwg);
sumwgx = simd_sum(sumwgx);
// Initialize shared memory
if (simd_group_id == 0) {
local_sumx[simd_lane_id] = 0;
local_sumx2[simd_lane_id] = 0;
local_sumwg[simd_lane_id] = 0;
local_sumwgx[simd_lane_id] = 0;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Write simd accumulations into shared memory
if (simd_lane_id == 0) {
local_sumx[simd_group_id] = sumx;
local_sumx2[simd_group_id] = sumx2;
local_sumwg[simd_group_id] = sumwg;
local_sumwgx[simd_group_id] = sumwgx;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Accumulate over simd groups
if (simd_group_id == 0) {
sumx = simd_sum(local_sumx[simd_lane_id]);
sumx2 = simd_sum(local_sumx2[simd_lane_id]);
sumwg = simd_sum(local_sumwg[simd_lane_id]);
sumwgx = simd_sum(local_sumwgx[simd_lane_id]);
if (simd_lane_id == 0) {
float mean = sumx / axis_size;
float variance = sumx2 / axis_size - mean * mean;
local_mean[0] = mean;
local_normalizer[0] = metal::precise::rsqrt(variance + eps);
local_meanwg[0] = sumwg / axis_size;
local_meanwgx[0] = sumwgx / axis_size;
// Compute the neccesary scaling factors using the mean
float factors[3] = {0};
constexpr int meanwg = 0;
constexpr int meanwgxc = 1;
constexpr int normalizer2 = 2;
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
if (r + lid * N_READS + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
float t = x[i + r] - mean;
float wi = w[(i + r) * w_stride];
float gi = g[i + r];
float wg = wi * gi;
factors[meanwg] += wg;
factors[meanwgxc] += wg * t;
factors[normalizer2] += t * t;
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((r + lid * N_READS + i) < axis_size) {
float t = x[i + r] - mean;
float wi = w[(i + r) * w_stride];
float gi = g[i + r];
float wg = wi * gi;
factors[meanwg] += wg;
factors[meanwgxc] += wg * t;
factors[normalizer2] += t * t;
}
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float mean = local_mean[0];
float normalizer = local_normalizer[0];
float meanwg = local_meanwg[0];
float meanwgxc = local_meanwgx[0] - meanwg * mean;
float normalizer2 = normalizer * normalizer;
threadgroup_sum<3>(factors, local_buffer, simd_lane_id, simd_group_id);
factors[meanwg] /= axis_size;
factors[meanwgxc] /= axis_size;
factors[normalizer2] = 1 / (factors[normalizer2] / axis_size + eps);
float normalizer = metal::precise::sqrt(factors[normalizer2]);
// Write the outputs
gx += gid * size_t(axis_size) + lid * N_READS;
@ -470,7 +396,8 @@ template <typename T, int N_READS = RMS_N_READS>
float wi = w[(i + r) * w_stride];
float gi = g[i + r];
gx[i + r] = static_cast<T>(
normalizer * (wi * gi - meanwg) - xi * meanwgxc * normalizer2);
normalizer * (wi * gi - factors[meanwg]) -
xi * factors[meanwgxc] * factors[normalizer2]);
if (has_w) {
gw[i + r] = static_cast<T>(gi * xi);
}
@ -482,7 +409,8 @@ template <typename T, int N_READS = RMS_N_READS>
float wi = w[(i + r) * w_stride];
float gi = g[i + r];
gx[i + r] = static_cast<T>(
normalizer * (wi * gi - meanwg) - xi * meanwgxc * normalizer2);
normalizer * (wi * gi - factors[meanwg]) -
xi * factors[meanwgxc] * factors[normalizer2]);
if (has_w) {
gw[i + r] = static_cast<T>(gi * xi);
}

View File

@ -255,12 +255,13 @@ void LayerNorm::eval_gpu(
auto axis_size = static_cast<uint32_t>(x.shape().back());
int n_rows = x.data_size() / axis_size;
const int simd_size = 32;
const int n_reads = RMS_N_READS;
const int looped_limit = RMS_LOOPED_LIMIT;
int simd_size = 32;
int n_reads = 8;
int looped_limit = 6656;
std::string op_name = "layer_norm";
if (axis_size > looped_limit) {
op_name += "_looped";
n_reads = 4;
}
op_name += type_to_name(out);
auto& compute_encoder = d.get_command_encoder(s.index);
@ -272,7 +273,13 @@ void LayerNorm::eval_gpu(
size_t threadgroup_needed = (axis_size + n_reads - 1) / n_reads;
size_t simds_needed = (threadgroup_needed + simd_size - 1) / simd_size;
size_t threadgroup_size = simd_size * simds_needed;
assert(threadgroup_size <= kernel->maxTotalThreadsPerThreadgroup());
if (threadgroup_size > kernel->maxTotalThreadsPerThreadgroup()) {
std::ostringstream msg;
msg << "[layer_norm] Threadgroup size " << threadgroup_size
<< " is larger than the maximum allowed threadgroup size "
<< kernel->maxTotalThreadsPerThreadgroup();
throw std::runtime_error(msg.str());
}
size_t n_threads = n_rows * threadgroup_size;
grid_dims = MTL::Size(n_threads, 1, 1);
group_dims = MTL::Size(threadgroup_size, 1, 1);
@ -372,12 +379,13 @@ void LayerNormVJP::eval_gpu(
g, gb, "sum", plan, {0}, compute_encoder, d, s);
}
const int simd_size = 32;
const int n_reads = RMS_N_READS;
const int looped_limit = RMS_LOOPED_LIMIT;
int simd_size = 32;
int n_reads = 8;
int looped_limit = 8192;
std::string op_name = "vjp_layer_norm";
if (axis_size > looped_limit) {
op_name += "_looped";
n_reads = 4;
}
op_name += type_to_name(gx);
@ -394,7 +402,13 @@ void LayerNormVJP::eval_gpu(
size_t threadgroup_needed = (axis_size + n_reads - 1) / n_reads;
size_t simds_needed = (threadgroup_needed + simd_size - 1) / simd_size;
size_t threadgroup_size = simd_size * simds_needed;
assert(threadgroup_size <= kernel->maxTotalThreadsPerThreadgroup());
if (threadgroup_size > kernel->maxTotalThreadsPerThreadgroup()) {
std::ostringstream msg;
msg << "[vjp_layer_norm] Threadgroup size " << threadgroup_size
<< " is larger than the maximum allowed threadgroup size "
<< kernel->maxTotalThreadsPerThreadgroup();
throw std::runtime_error(msg.str());
}
size_t n_threads = n_rows * threadgroup_size;
grid_dims = MTL::Size(n_threads, 1, 1);
group_dims = MTL::Size(threadgroup_size, 1, 1);

View File

@ -369,7 +369,7 @@ bool ScaledDotProductAttention::use_fallback(
const bool sdpa_full_supported_mask = !has_mask || has_arr_mask ||
(query_sequence_length <= key_sequence_length && do_causal);
const bool supports_sdpa_full =
const bool supports_sdpa_full = query_sequence_length > 8 &&
sdpa_full_supported_mask && sdpa_full_supported_head_dim;
const bool supports_sdpa_vector = (query_sequence_length <= 8) &&

View File

@ -231,13 +231,11 @@ array layer_norm(
const std::vector<array>& inputs) {
auto x = astype(inputs[0], float32, s);
// Should I not be smart here and leave the double mean to simplify()?
auto mu = mean(x, /* axis= */ -1, /* keepdims= */ true, s);
auto mu2 = square(mu, s);
auto x2 = mean(square(x, s), /* axis= */ -1, /* keepdims= */ true, s);
auto v = subtract(x2, mu2, s);
auto xc = subtract(x, mu, s);
auto v = mean(square(xc, s), /* axis= */ -1, /* keepdims= */ true, s);
x = multiply(subtract(x, mu, s), rsqrt(add(v, array(eps, float32), s), s));
x = multiply(xc, rsqrt(add(v, array(eps, float32), s), s));
x = astype(x, out_type, s);
// If the LN is affine then transform x according to the weight and bias