mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-16 22:11:15 +08:00
Adds device context manager (#679)
This commit is contained in:
parent
ccf1645995
commit
35431a4ac8
@ -10,7 +10,7 @@ MLX was developed with contributions from the following individuals:
|
||||
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops.
|
||||
- Juarez Bochi: Fixed bug in cross attention.
|
||||
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
|
||||
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile` and safetensor support
|
||||
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream` and safetensor support
|
||||
- Gabrijel Boduljak: Added `mlx.core.linalg`, implemented `norm` method and `InstanceNorm` layer. Implemented ``MaxPool1d``, ``MaxPool2d``, ``AvgPool1d``, ``AvgPool2d``.
|
||||
|
||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||
|
@ -26,6 +26,7 @@ extensions = [
|
||||
|
||||
python_use_unqualified_type_names = True
|
||||
autosummary_generate = True
|
||||
autosummary_filename_map = {"mlx.core.Stream": "stream_class"}
|
||||
|
||||
intersphinx_mapping = {
|
||||
"https://docs.python.org/3": None,
|
||||
|
@ -9,9 +9,10 @@ Devices and Streams
|
||||
:toctree: _autosummary
|
||||
|
||||
Device
|
||||
Stream
|
||||
default_device
|
||||
set_default_device
|
||||
Stream
|
||||
default_stream
|
||||
new_stream
|
||||
set_default_stream
|
||||
stream
|
||||
|
10
mlx/ops.cpp
10
mlx/ops.cpp
@ -59,16 +59,6 @@ Dtype at_least_float(const Dtype& d) {
|
||||
|
||||
} // namespace
|
||||
|
||||
Stream to_stream(StreamOrDevice s) {
|
||||
if (std::holds_alternative<std::monostate>(s)) {
|
||||
return default_stream(default_device());
|
||||
} else if (std::holds_alternative<Device>(s)) {
|
||||
return default_stream(std::get<Device>(s));
|
||||
} else {
|
||||
return std::get<Stream>(s);
|
||||
}
|
||||
}
|
||||
|
||||
array arange(
|
||||
double start,
|
||||
double stop,
|
||||
|
@ -3,18 +3,14 @@
|
||||
#pragma once
|
||||
|
||||
#include <optional>
|
||||
#include <variant>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/device.h"
|
||||
#include "mlx/stream.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
using StreamOrDevice = std::variant<std::monostate, Stream, Device>;
|
||||
|
||||
Stream to_stream(StreamOrDevice s);
|
||||
|
||||
/** Creation operations */
|
||||
|
||||
/**
|
||||
|
@ -7,6 +7,16 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
Stream to_stream(StreamOrDevice s) {
|
||||
if (std::holds_alternative<std::monostate>(s)) {
|
||||
return default_stream(default_device());
|
||||
} else if (std::holds_alternative<Device>(s)) {
|
||||
return default_stream(std::get<Device>(s));
|
||||
} else {
|
||||
return std::get<Stream>(s);
|
||||
}
|
||||
}
|
||||
|
||||
void PrintFormatter::print(std::ostream& os, bool val) {
|
||||
if (capitalize_bool) {
|
||||
os << (val ? "True" : "False");
|
||||
|
26
mlx/utils.h
26
mlx/utils.h
@ -2,6 +2,8 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <variant>
|
||||
|
||||
#include "array.h"
|
||||
#include "device.h"
|
||||
#include "dtype.h"
|
||||
@ -9,6 +11,30 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
using StreamOrDevice = std::variant<std::monostate, Stream, Device>;
|
||||
Stream to_stream(StreamOrDevice s);
|
||||
|
||||
struct StreamContext {
|
||||
public:
|
||||
StreamContext(StreamOrDevice s) : _stream(default_stream(default_device())) {
|
||||
if (std::holds_alternative<std::monostate>(s)) {
|
||||
throw std::runtime_error(
|
||||
"[StreamContext] Invalid argument, please specify a stream or device.");
|
||||
}
|
||||
auto _s = to_stream(s);
|
||||
set_default_device(_s.device);
|
||||
set_default_stream(_s);
|
||||
}
|
||||
|
||||
~StreamContext() {
|
||||
set_default_device(_stream.device);
|
||||
set_default_stream(_stream);
|
||||
}
|
||||
|
||||
private:
|
||||
Stream _stream;
|
||||
};
|
||||
|
||||
struct PrintFormatter {
|
||||
inline void print(std::ostream& os, bool val);
|
||||
inline void print(std::ostream& os, int16_t val);
|
||||
|
@ -1,5 +1,4 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
|
@ -14,6 +14,7 @@ pybind11_add_module(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/random.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/linalg.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/constants.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
)
|
||||
|
||||
if (NOT MLX_PYTHON_BINDINGS_OUTPUT_DIRECTORY)
|
||||
|
@ -12,7 +12,8 @@ using namespace py::literals;
|
||||
using namespace mlx::core;
|
||||
|
||||
void init_device(py::module_& m) {
|
||||
auto device_class = py::class_<Device>(m, "Device");
|
||||
auto device_class = py::class_<Device>(
|
||||
m, "Device", R"pbdoc(A device to run operations on.)pbdoc");
|
||||
py::enum_<Device::DeviceType>(m, "DeviceType")
|
||||
.value("cpu", Device::DeviceType::cpu)
|
||||
.value("gpu", Device::DeviceType::gpu)
|
||||
@ -39,6 +40,13 @@ void init_device(py::module_& m) {
|
||||
|
||||
py::implicitly_convertible<Device::DeviceType, Device>();
|
||||
|
||||
m.def("default_device", &default_device);
|
||||
m.def("set_default_device", &set_default_device, "device"_a);
|
||||
m.def(
|
||||
"default_device",
|
||||
&default_device,
|
||||
R"pbdoc(Get the default device.)pbdoc");
|
||||
m.def(
|
||||
"set_default_device",
|
||||
&set_default_device,
|
||||
"device"_a,
|
||||
R"pbdoc(Set the default device.)pbdoc");
|
||||
}
|
||||
|
@ -18,6 +18,7 @@ void init_fft(py::module_&);
|
||||
void init_linalg(py::module_&);
|
||||
void init_constants(py::module_&);
|
||||
void init_extensions(py::module_&);
|
||||
void init_utils(py::module_&);
|
||||
|
||||
PYBIND11_MODULE(core, m) {
|
||||
m.doc() = "mlx: A framework for machine learning on Apple silicon.";
|
||||
@ -35,5 +36,7 @@ PYBIND11_MODULE(core, m) {
|
||||
init_linalg(m);
|
||||
init_constants(m);
|
||||
init_extensions(m);
|
||||
init_utils(m);
|
||||
|
||||
m.attr("__version__") = TOSTRING(_VERSION_);
|
||||
}
|
||||
|
@ -12,7 +12,12 @@ using namespace py::literals;
|
||||
using namespace mlx::core;
|
||||
|
||||
void init_stream(py::module_& m) {
|
||||
py::class_<Stream>(m, "Stream")
|
||||
py::class_<Stream>(
|
||||
m,
|
||||
"Stream",
|
||||
R"pbdoc(
|
||||
A stream for running operations on a given device.
|
||||
)pbdoc")
|
||||
.def(py::init<int, Device>(), "index"_a, "device"_a)
|
||||
.def_readonly("device", &Stream::device)
|
||||
.def(
|
||||
@ -28,7 +33,27 @@ void init_stream(py::module_& m) {
|
||||
|
||||
py::implicitly_convertible<Device::DeviceType, Device>();
|
||||
|
||||
m.def("default_stream", &default_stream, "device"_a);
|
||||
m.def("set_default_stream", &set_default_stream, "stream"_a);
|
||||
m.def("new_stream", &new_stream, "device"_a);
|
||||
m.def(
|
||||
"default_stream",
|
||||
&default_stream,
|
||||
"device"_a,
|
||||
R"pbdoc(Get the device's default stream.)pbdoc");
|
||||
m.def(
|
||||
"set_default_stream",
|
||||
&set_default_stream,
|
||||
"stream"_a,
|
||||
R"pbdoc(
|
||||
Set the default stream.
|
||||
|
||||
This will make the given stream the default for the
|
||||
streams device. It will not change the default device.
|
||||
|
||||
Args:
|
||||
stream (stream): Stream to make the default.
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"new_stream",
|
||||
&new_stream,
|
||||
"device"_a,
|
||||
R"pbdoc(Make a new stream on the given device.)pbdoc");
|
||||
}
|
||||
|
81
python/src/utils.cpp
Normal file
81
python/src/utils.cpp
Normal file
@ -0,0 +1,81 @@
|
||||
|
||||
#include "mlx/utils.h"
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <optional>
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace py::literals;
|
||||
using namespace mlx::core;
|
||||
|
||||
// Slightly different from the original, with python context on init we are not
|
||||
// in the context yet. Only create the inner context on enter then delete on
|
||||
// exit.
|
||||
class PyStreamContext {
|
||||
public:
|
||||
PyStreamContext(StreamOrDevice s) : _inner(nullptr) {
|
||||
if (std::holds_alternative<std::monostate>(s)) {
|
||||
throw std::runtime_error(
|
||||
"[StreamContext] Invalid argument, please specify a stream or device.");
|
||||
}
|
||||
_s = s;
|
||||
}
|
||||
|
||||
void enter() {
|
||||
_inner = new StreamContext(_s);
|
||||
}
|
||||
|
||||
void exit() {
|
||||
if (_inner != nullptr) {
|
||||
delete _inner;
|
||||
_inner = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
StreamOrDevice _s;
|
||||
StreamContext* _inner;
|
||||
};
|
||||
|
||||
void init_utils(py::module_& m) {
|
||||
py::class_<PyStreamContext>(m, "StreamContext", R"pbdoc(
|
||||
A context manager for setting the current device and stream.
|
||||
|
||||
See :func:`stream` for usage.
|
||||
|
||||
Args:
|
||||
s: The stream or device to set as the default.
|
||||
)pbdoc")
|
||||
.def(py::init<StreamOrDevice>(), "s"_a)
|
||||
.def("__enter__", [](PyStreamContext& scm) { scm.enter(); })
|
||||
.def(
|
||||
"__exit__",
|
||||
[](PyStreamContext& scm,
|
||||
const std::optional<py::type>& exc_type,
|
||||
const std::optional<py::object>& exc_value,
|
||||
const std::optional<py::object>& traceback) { scm.exit(); });
|
||||
m.def(
|
||||
"stream",
|
||||
[](StreamOrDevice s) { return PyStreamContext(s); },
|
||||
"s"_a,
|
||||
R"pbdoc(
|
||||
Create a context manager to set the default device and stream.
|
||||
|
||||
Args:
|
||||
s: The :obj:`Stream` or :obj:`Device` to set as the default.
|
||||
|
||||
Returns:
|
||||
A context manager that sets the default device and stream.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block::python
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
# Create a context manager for the default device and stream.
|
||||
with mx.stream(mx.cpu):
|
||||
# Operations here will use mx.cpu by default.
|
||||
pass
|
||||
)pbdoc");
|
||||
}
|
@ -38,6 +38,17 @@ class TestDevice(mlx_tests.MLXTestCase):
|
||||
# Restore device
|
||||
mx.set_default_device(device)
|
||||
|
||||
@unittest.skipIf(not mx.metal.is_available(), "Metal is not available")
|
||||
def test_device_context(self):
|
||||
default = mx.default_device()
|
||||
diff = mx.cpu if default == mx.gpu else mx.gpu
|
||||
self.assertNotEqual(default, diff)
|
||||
with mx.stream(diff):
|
||||
a = mx.add(mx.zeros((2, 2)), mx.ones((2, 2)))
|
||||
mx.eval(a)
|
||||
self.assertEqual(mx.default_device(), diff)
|
||||
self.assertEqual(mx.default_device(), default)
|
||||
|
||||
def test_op_on_device(self):
|
||||
x = mx.array(1.0)
|
||||
y = mx.array(1.0)
|
||||
|
@ -19,72 +19,73 @@ class TestFFT(mlx_tests.MLXTestCase):
|
||||
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6))
|
||||
|
||||
def test_fft(self):
|
||||
default = mx.default_device()
|
||||
mx.set_default_device(mx.cpu)
|
||||
|
||||
def check_mx_np(op_mx, op_np, a_np, **kwargs):
|
||||
out_np = op_np(a_np, **kwargs)
|
||||
a_mx = mx.array(a_np)
|
||||
out_mx = op_mx(a_mx, **kwargs)
|
||||
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6))
|
||||
|
||||
r = np.random.rand(100).astype(np.float32)
|
||||
i = np.random.rand(100).astype(np.float32)
|
||||
a_np = r + 1j * i
|
||||
check_mx_np(mx.fft.fft, np.fft.fft, a_np)
|
||||
with mx.stream(mx.cpu):
|
||||
r = np.random.rand(100).astype(np.float32)
|
||||
i = np.random.rand(100).astype(np.float32)
|
||||
a_np = r + 1j * i
|
||||
check_mx_np(mx.fft.fft, np.fft.fft, a_np)
|
||||
|
||||
# Check with slicing and padding
|
||||
r = np.random.rand(100).astype(np.float32)
|
||||
i = np.random.rand(100).astype(np.float32)
|
||||
a_np = r + 1j * i
|
||||
check_mx_np(mx.fft.fft, np.fft.fft, a_np, n=80)
|
||||
check_mx_np(mx.fft.fft, np.fft.fft, a_np, n=120)
|
||||
# Check with slicing and padding
|
||||
r = np.random.rand(100).astype(np.float32)
|
||||
i = np.random.rand(100).astype(np.float32)
|
||||
a_np = r + 1j * i
|
||||
check_mx_np(mx.fft.fft, np.fft.fft, a_np, n=80)
|
||||
check_mx_np(mx.fft.fft, np.fft.fft, a_np, n=120)
|
||||
|
||||
# Check different axes
|
||||
r = np.random.rand(100, 100).astype(np.float32)
|
||||
i = np.random.rand(100, 100).astype(np.float32)
|
||||
a_np = r + 1j * i
|
||||
check_mx_np(mx.fft.fft, np.fft.fft, a_np, axis=0)
|
||||
check_mx_np(mx.fft.fft, np.fft.fft, a_np, axis=1)
|
||||
# Check different axes
|
||||
r = np.random.rand(100, 100).astype(np.float32)
|
||||
i = np.random.rand(100, 100).astype(np.float32)
|
||||
a_np = r + 1j * i
|
||||
check_mx_np(mx.fft.fft, np.fft.fft, a_np, axis=0)
|
||||
check_mx_np(mx.fft.fft, np.fft.fft, a_np, axis=1)
|
||||
|
||||
# Check real fft
|
||||
a_np = np.random.rand(100).astype(np.float32)
|
||||
check_mx_np(mx.fft.rfft, np.fft.rfft, a_np)
|
||||
check_mx_np(mx.fft.rfft, np.fft.rfft, a_np, n=80)
|
||||
check_mx_np(mx.fft.rfft, np.fft.rfft, a_np, n=120)
|
||||
# Check real fft
|
||||
a_np = np.random.rand(100).astype(np.float32)
|
||||
check_mx_np(mx.fft.rfft, np.fft.rfft, a_np)
|
||||
check_mx_np(mx.fft.rfft, np.fft.rfft, a_np, n=80)
|
||||
check_mx_np(mx.fft.rfft, np.fft.rfft, a_np, n=120)
|
||||
|
||||
# Check real inverse
|
||||
r = np.random.rand(100, 100).astype(np.float32)
|
||||
i = np.random.rand(100, 100).astype(np.float32)
|
||||
a_np = r + 1j * i
|
||||
check_mx_np(mx.fft.ifft, np.fft.ifft, a_np)
|
||||
check_mx_np(mx.fft.ifft, np.fft.ifft, a_np, n=80)
|
||||
check_mx_np(mx.fft.ifft, np.fft.ifft, a_np, n=120)
|
||||
check_mx_np(mx.fft.irfft, np.fft.irfft, a_np)
|
||||
check_mx_np(mx.fft.irfft, np.fft.irfft, a_np, n=80)
|
||||
check_mx_np(mx.fft.irfft, np.fft.irfft, a_np, n=120)
|
||||
|
||||
mx.set_default_device(default)
|
||||
# Check real inverse
|
||||
r = np.random.rand(100, 100).astype(np.float32)
|
||||
i = np.random.rand(100, 100).astype(np.float32)
|
||||
a_np = r + 1j * i
|
||||
check_mx_np(mx.fft.ifft, np.fft.ifft, a_np)
|
||||
check_mx_np(mx.fft.ifft, np.fft.ifft, a_np, n=80)
|
||||
check_mx_np(mx.fft.ifft, np.fft.ifft, a_np, n=120)
|
||||
check_mx_np(mx.fft.irfft, np.fft.irfft, a_np)
|
||||
check_mx_np(mx.fft.irfft, np.fft.irfft, a_np, n=80)
|
||||
check_mx_np(mx.fft.irfft, np.fft.irfft, a_np, n=120)
|
||||
|
||||
def test_fftn(self):
|
||||
default = mx.default_device()
|
||||
mx.set_default_device(mx.cpu)
|
||||
with mx.stream(mx.cpu):
|
||||
r = np.random.randn(8, 8, 8).astype(np.float32)
|
||||
i = np.random.randn(8, 8, 8).astype(np.float32)
|
||||
a = r + 1j * i
|
||||
|
||||
r = np.random.randn(8, 8, 8).astype(np.float32)
|
||||
i = np.random.randn(8, 8, 8).astype(np.float32)
|
||||
a = r + 1j * i
|
||||
axes = [None, (1, 2), (2, 1), (0, 2)]
|
||||
shapes = [None, (10, 5), (5, 10)]
|
||||
ops = [
|
||||
"fft2",
|
||||
"ifft2",
|
||||
"rfft2",
|
||||
"irfft2",
|
||||
"fftn",
|
||||
"ifftn",
|
||||
"rfftn",
|
||||
"irfftn",
|
||||
]
|
||||
|
||||
axes = [None, (1, 2), (2, 1), (0, 2)]
|
||||
shapes = [None, (10, 5), (5, 10)]
|
||||
ops = ["fft2", "ifft2", "rfft2", "irfft2", "fftn", "ifftn", "rfftn", "irfftn"]
|
||||
|
||||
for op, ax, s in itertools.product(ops, axes, shapes):
|
||||
x = a
|
||||
if op in ["rfft2", "rfftn"]:
|
||||
x = r
|
||||
self.check_mx_np(op, x, axes=ax, s=s)
|
||||
|
||||
mx.set_default_device(default)
|
||||
for op, ax, s in itertools.product(ops, axes, shapes):
|
||||
x = a
|
||||
if op in ["rfft2", "rfftn"]:
|
||||
x = r
|
||||
self.check_mx_np(op, x, axes=ax, s=s)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
Reference in New Issue
Block a user