Support transposed head/seq for kv (#1950)

* support transposed head/seq for kv

* fix flaky test

* nit
This commit is contained in:
Awni Hannun
2025-03-10 10:53:45 -07:00
committed by GitHub
parent cffceda6ee
commit 3c3e558c60
4 changed files with 84 additions and 45 deletions

View File

@@ -131,8 +131,11 @@ void sdpa_vector(
int gqa_factor = q.shape(1) / k.shape(1);
int N = k.shape(2);
int B = q.shape(0) * q.shape(1);
size_t k_stride = k.strides()[1];
size_t v_stride = v.strides()[1];
size_t k_head_stride = k.strides()[1];
size_t k_seq_stride = k.strides()[2];
size_t v_head_stride = v.strides()[1];
size_t v_seq_stride = v.strides()[2];
MTL::Size group_dims(1024, 1, 1);
MTL::Size grid_dims(B, q.shape(2), 1);
@@ -158,20 +161,23 @@ void sdpa_vector(
compute_encoder.set_output_array(out, 3);
compute_encoder.set_bytes(gqa_factor, 4);
compute_encoder.set_bytes(N, 5);
compute_encoder.set_bytes(k_stride, 6);
compute_encoder.set_bytes(v_stride, 7);
compute_encoder.set_bytes(scale, 8);
compute_encoder.set_bytes(k_head_stride, 6);
compute_encoder.set_bytes(k_seq_stride, 7);
compute_encoder.set_bytes(v_head_stride, 8);
compute_encoder.set_bytes(v_seq_stride, 9);
compute_encoder.set_bytes(scale, 10);
if (has_mask) {
auto& m = *mask;
compute_encoder.set_input_array(m, 9);
compute_encoder.set_input_array(m, 11);
auto nd = m.ndim();
int32_t kv_seq_stride =
nd >= 1 && m.shape(-1) > 1 ? m.strides()[nd - 1] : 0;
int32_t q_seq_stride = nd >= 2 && m.shape(-2) > 1 ? m.strides()[nd - 2] : 0;
int32_t head_stride = nd >= 3 && m.shape(-3) > 1 ? m.strides()[nd - 3] : 0;
compute_encoder.set_bytes(kv_seq_stride, 10);
compute_encoder.set_bytes(q_seq_stride, 11);
compute_encoder.set_bytes(head_stride, 12);
compute_encoder.set_bytes(kv_seq_stride, 12);
compute_encoder.set_bytes(q_seq_stride, 13);
compute_encoder.set_bytes(head_stride, 14);
}
// Launch
@@ -202,8 +208,10 @@ void sdpa_vector_2pass(
int N = k.shape(2);
int blocks = 32;
int B = q.shape(0) * q.shape(1);
auto k_stride = k.strides()[1];
auto v_stride = v.strides()[1];
size_t k_head_stride = k.strides()[1];
size_t k_seq_stride = k.strides()[2];
size_t v_head_stride = v.strides()[1];
size_t v_seq_stride = v.strides()[2];
MTL::Size group_dims(8 * 32, 1, 1);
MTL::Size grid_dims(B, q.shape(2), blocks);
@@ -250,20 +258,22 @@ void sdpa_vector_2pass(
compute_encoder.set_output_array(maxs, 5);
compute_encoder.set_bytes(gqa_factor, 6);
compute_encoder.set_bytes(N, 7);
compute_encoder.set_bytes(k_stride, 8);
compute_encoder.set_bytes(v_stride, 9);
compute_encoder.set_bytes(scale, 10);
compute_encoder.set_bytes(k_head_stride, 8);
compute_encoder.set_bytes(k_seq_stride, 9);
compute_encoder.set_bytes(v_head_stride, 10);
compute_encoder.set_bytes(v_seq_stride, 11);
compute_encoder.set_bytes(scale, 12);
if (has_mask) {
auto& m = *mask;
compute_encoder.set_input_array(m, 11);
compute_encoder.set_input_array(m, 13);
auto nd = m.ndim();
int32_t kv_seq_stride =
nd >= 1 && m.shape(-1) > 1 ? m.strides()[nd - 1] : 0;
int32_t q_seq_stride = nd >= 2 && m.shape(-2) > 1 ? m.strides()[nd - 2] : 0;
int32_t head_stride = nd >= 3 && m.shape(-3) > 1 ? m.strides()[nd - 3] : 0;
compute_encoder.set_bytes(kv_seq_stride, 12);
compute_encoder.set_bytes(q_seq_stride, 13);
compute_encoder.set_bytes(head_stride, 14);
compute_encoder.set_bytes(kv_seq_stride, 14);
compute_encoder.set_bytes(q_seq_stride, 15);
compute_encoder.set_bytes(head_stride, 16);
}
// Launch
@@ -334,15 +344,6 @@ void ScaledDotProductAttention::eval_gpu(
(strides[1] == shape[3]) && (strides[0] == strides[2] * shape[2]);
};
// Returns true if the array is row contiguous except the sequence length
// dimension that can be sliced but with step=1.
auto is_contiguous_except_seq_len = [](const array& arr) {
auto& strides = arr.strides();
auto& shape = arr.shape();
return strides[3] == 1 && strides[2] == shape[3] &&
strides[0] == strides[1] * shape[1];
};
// Checks that the headdim dimension has stride 1.
auto is_matrix_contiguous = [](const array& arr) {
return arr.strides(3) == 1;
@@ -351,8 +352,8 @@ void ScaledDotProductAttention::eval_gpu(
// We are in vector mode ie single query
if (q_pre.shape(2) <= 8) {
const auto& q = copy_unless(is_contiguous_or_head_seq_transposed, q_pre);
const auto& k = copy_unless(is_contiguous_except_seq_len, k_pre);
const auto& v = copy_unless(is_contiguous_except_seq_len, v_pre);
const auto& k = copy_unless(is_matrix_contiguous, k_pre);
const auto& v = copy_unless(is_matrix_contiguous, v_pre);
// Donate the query if possible
if (q.is_donatable() && (q.shape(2) == 1 || !q.flags().row_contiguous) &&