mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Add gradient for the scales and biases in gather qmm
This commit is contained in:
@@ -109,6 +109,70 @@ std::tuple<array, array, array, int> vmap_ternary_op(
|
|||||||
return {a, b, c, to_ax};
|
return {a, b, c, to_ax};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Calculate the gradient wrt to the weights of the following calculation
|
||||||
|
//
|
||||||
|
// y = gather_mm(x, w.T, lhs_indices, rhs_indices, sorted)
|
||||||
|
//
|
||||||
|
// Note the transpose above. This function returns the gradient for w.T so if w
|
||||||
|
// was used instead then one needs to transpose the returned gradient.
|
||||||
|
//
|
||||||
|
// We define it as a separate function to reuse it for gather_mm and
|
||||||
|
// gather_qmm.
|
||||||
|
array gather_mm_grad(
|
||||||
|
const array& x,
|
||||||
|
const array& dy,
|
||||||
|
const array& lhs_indices,
|
||||||
|
const array& rhs_indices,
|
||||||
|
bool sorted,
|
||||||
|
Shape batch_shape,
|
||||||
|
const Stream& s) {
|
||||||
|
int M = x.shape(-2);
|
||||||
|
int K = x.shape(-1);
|
||||||
|
int N = dy.shape(-1);
|
||||||
|
int num_segments = std::accumulate(
|
||||||
|
batch_shape.begin(), batch_shape.end(), 1, std::multiplies<int>());
|
||||||
|
batch_shape.push_back(N);
|
||||||
|
batch_shape.push_back(K);
|
||||||
|
|
||||||
|
// If the indices are sorted then it means that we can do the whole gradient
|
||||||
|
// computation via a segmented matmul. We just need to calculate the segments
|
||||||
|
// using the indices.
|
||||||
|
if (sorted) {
|
||||||
|
auto segments = zeros({num_segments}, uint32, s);
|
||||||
|
segments = scatter_add_axis(segments, rhs_indices, array(M, uint32), 0, s);
|
||||||
|
segments = cumsum(segments, 0, false, true, s);
|
||||||
|
segments = concatenate({array({0}, {1}, uint32), segments}, 0, s);
|
||||||
|
segments = as_strided(segments, {num_segments, 2}, {1, 1}, 0, s);
|
||||||
|
|
||||||
|
return reshape(
|
||||||
|
segmented_mm(
|
||||||
|
swapaxes(flatten(dy, 0, -2, s), 0, 1, s),
|
||||||
|
flatten(x, 0, -2, s),
|
||||||
|
segments,
|
||||||
|
s),
|
||||||
|
std::move(batch_shape),
|
||||||
|
s);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Otherwise we need to gather matmul the dy and then scatter add it to the
|
||||||
|
// correct locations.
|
||||||
|
else {
|
||||||
|
// TODO: If the lhs indices wasn't provided, this is always a sorted matmul
|
||||||
|
// so we should add that check.
|
||||||
|
auto dw = gather_mm(
|
||||||
|
swapaxes(dy, -1, -2, s), x, std::nullopt, lhs_indices, false, s);
|
||||||
|
return reshape(
|
||||||
|
scatter_add(
|
||||||
|
zeros({num_segments, N, K}, dw.dtype(), s),
|
||||||
|
rhs_indices,
|
||||||
|
expand_dims(dw, -3, s),
|
||||||
|
0,
|
||||||
|
s),
|
||||||
|
std::move(batch_shape),
|
||||||
|
s);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
std::vector<array> Primitive::jvp(
|
std::vector<array> Primitive::jvp(
|
||||||
@@ -3181,7 +3245,6 @@ std::vector<array> QuantizedMatmul::vjp(
|
|||||||
vjps.push_back(sum(*dsb, -1, false, stream()));
|
vjps.push_back(sum(*dsb, -1, false, stream()));
|
||||||
} else {
|
} else {
|
||||||
// scales
|
// scales
|
||||||
auto s = stream();
|
|
||||||
auto wq = dequantize(
|
auto wq = dequantize(
|
||||||
primals[1],
|
primals[1],
|
||||||
ones_like(primals[2], stream()),
|
ones_like(primals[2], stream()),
|
||||||
@@ -3259,6 +3322,7 @@ std::vector<array> GatherQMM::vjp(
|
|||||||
|
|
||||||
bool sorted = left_sorted_ || right_sorted_;
|
bool sorted = left_sorted_ || right_sorted_;
|
||||||
bool no_broadcast = rhs_indices.size() * M * K == x.size();
|
bool no_broadcast = rhs_indices.size() * M * K == x.size();
|
||||||
|
std::optional<array> dsb = std::nullopt;
|
||||||
|
|
||||||
for (auto arg : argnums) {
|
for (auto arg : argnums) {
|
||||||
// gradient wrt to x
|
// gradient wrt to x
|
||||||
@@ -3297,9 +3361,45 @@ std::vector<array> GatherQMM::vjp(
|
|||||||
}
|
}
|
||||||
|
|
||||||
// gradient wrt to w_q, scales or biases
|
// gradient wrt to w_q, scales or biases
|
||||||
else {
|
else if (arg == 1) {
|
||||||
throw std::runtime_error(
|
throw std::runtime_error(
|
||||||
"GatherQMM::vjp no gradient wrt the quantized matrix yet.");
|
"GatherQMM::vjp no gradient wrt the quantized weights.");
|
||||||
|
} else {
|
||||||
|
if (!dsb) {
|
||||||
|
auto shape = w.shape();
|
||||||
|
shape.pop_back();
|
||||||
|
shape.pop_back();
|
||||||
|
dsb = unflatten(
|
||||||
|
gather_mm_grad(
|
||||||
|
x,
|
||||||
|
cotan,
|
||||||
|
lhs_indices,
|
||||||
|
rhs_indices,
|
||||||
|
sorted,
|
||||||
|
std::move(shape),
|
||||||
|
stream()),
|
||||||
|
-1,
|
||||||
|
{-1, group_size_},
|
||||||
|
stream());
|
||||||
|
}
|
||||||
|
if (arg == 3) {
|
||||||
|
vjps.push_back(sum(*dsb, -1, false, stream()));
|
||||||
|
} else {
|
||||||
|
vjps.push_back(
|
||||||
|
sum(multiply(
|
||||||
|
*dsb,
|
||||||
|
dequantize(
|
||||||
|
w,
|
||||||
|
ones_like(scales, stream()),
|
||||||
|
zeros_like(biases, stream()),
|
||||||
|
group_size_,
|
||||||
|
bits_,
|
||||||
|
stream()),
|
||||||
|
stream()),
|
||||||
|
-1,
|
||||||
|
false,
|
||||||
|
stream()));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return vjps;
|
return vjps;
|
||||||
@@ -5106,46 +5206,21 @@ std::vector<array> GatherMM::vjp(
|
|||||||
stream()));
|
stream()));
|
||||||
}
|
}
|
||||||
} else if (arg == 1) {
|
} else if (arg == 1) {
|
||||||
if (sorted) {
|
auto shape = b.shape();
|
||||||
// Make the segments based on the rhs_indices
|
shape.pop_back();
|
||||||
int num_segments = primals[1].size() / K / N;
|
shape.pop_back();
|
||||||
auto segments = zeros({num_segments}, uint32, stream());
|
vjps.push_back(swapaxes(
|
||||||
segments = scatter_add_axis(
|
gather_mm_grad(
|
||||||
segments, rhs_indices, array(M, uint32), 0, stream());
|
a,
|
||||||
segments = cumsum(segments, 0, false, true, stream());
|
cotan,
|
||||||
segments =
|
lhs_indices,
|
||||||
concatenate({array({0}, {1}, uint32), segments}, 0, stream());
|
rhs_indices,
|
||||||
segments = as_strided(segments, {num_segments, 2}, {1, 1}, 0, stream());
|
sorted,
|
||||||
|
std::move(shape),
|
||||||
// Reshape and transpose the inputs such that they are a big segmented
|
stream()),
|
||||||
// matmul.
|
-1,
|
||||||
auto a = reshape(primals[0], {-1, K}, stream());
|
-2,
|
||||||
auto c = swapaxes(reshape(cotan, {-1, N}, stream()), 0, 1, stream());
|
stream()));
|
||||||
|
|
||||||
// Calculate the gradient.
|
|
||||||
// Since the gather mm is often used as x @ w.T we will calculate the
|
|
||||||
// gradient as c @ a and transpose it before returning it which should
|
|
||||||
// save a copy in that case.
|
|
||||||
auto g = segmented_mm(c, a, segments, stream());
|
|
||||||
g = swapaxes(g, 1, 2, stream());
|
|
||||||
|
|
||||||
vjps.push_back(reshape(g, primals[1].shape(), stream()));
|
|
||||||
} else {
|
|
||||||
// (M X K).T * M X N -> K X N
|
|
||||||
auto base = zeros_like(primals[1], stream());
|
|
||||||
auto at = swapaxes(primals[0], -1, -2, stream());
|
|
||||||
|
|
||||||
auto base_shape = base.shape();
|
|
||||||
base = reshape(base, {-1, K, N}, stream());
|
|
||||||
|
|
||||||
// g : (out_batch_shape) + (K, N)
|
|
||||||
auto g =
|
|
||||||
gather_mm(at, cotan, lhs_indices, std::nullopt, sorted, stream());
|
|
||||||
g = expand_dims(g, -3, stream());
|
|
||||||
auto gacc = scatter_add(base, rhs_indices, g, 0, stream());
|
|
||||||
|
|
||||||
vjps.push_back(reshape(gacc, base_shape, stream()));
|
|
||||||
}
|
|
||||||
} else {
|
} else {
|
||||||
throw std::invalid_argument(
|
throw std::invalid_argument(
|
||||||
"[GatherMM] Cannot calculate VJP with respect to indices.");
|
"[GatherMM] Cannot calculate VJP with respect to indices.");
|
||||||
|
|||||||
Reference in New Issue
Block a user