mirror of
https://github.com/ml-explore/mlx.git
synced 2025-10-18 15:28:16 +08:00
Eigenvalues and eigenvectors (#1334)
* initial eigvalsh * add compute_vectors * add compute_vectors_ * return a pair * add eigh to return only eigenvectors * fixed typo * merge merge Eighvalsh and Eigh into a single primitive * use the same primate with the flag * fix primatives * use MULTI * fix eval_gpu * fix decleration * rename EighPrimitive to Eigh * tests * tests * fix rebase and format * cleanup lapack * format * add cblas.h --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
@@ -405,4 +405,85 @@ void init_linalg(nb::module_& parent_module) {
|
||||
Returns:
|
||||
array: The cross product of ``a`` and ``b`` along the specified axis.
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"eigvalsh",
|
||||
&eigvalsh,
|
||||
"a"_a,
|
||||
"UPLO"_a = "L",
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
R"pbdoc(
|
||||
Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
|
||||
|
||||
This function supports arrays with at least 2 dimensions. When the
|
||||
input has more than two dimensions, the eigenvalues are computed for
|
||||
each matrix in the last two dimensions.
|
||||
|
||||
Args:
|
||||
a (array): Input array. Must be a real symmetric or complex
|
||||
Hermitian matrix.
|
||||
UPLO (str, optional): Whether to use the upper (``"U"``) or
|
||||
lower (``"L"``) triangle of the matrix. Default: ``"L"``.
|
||||
stream (Stream, optional): Stream or device. Defaults to ``None``
|
||||
in which case the default stream of the default device is used.
|
||||
|
||||
Returns:
|
||||
array: The eigenvalues in ascending order.
|
||||
|
||||
Note:
|
||||
The input matrix is assumed to be symmetric (or Hermitian). Only
|
||||
the selected triangle is used. No checks for symmetry are performed.
|
||||
|
||||
Example:
|
||||
>>> A = mx.array([[1., -2.], [-2., 1.]])
|
||||
>>> eigenvalues = mx.linalg.eigvalsh(A, stream=mx.cpu)
|
||||
>>> eigenvalues
|
||||
array([-1., 3.], dtype=float32)
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"eigh",
|
||||
[](const array& a, const std::string UPLO, StreamOrDevice s) {
|
||||
// TODO avoid cast?
|
||||
auto result = eigh(a, UPLO, s);
|
||||
return nb::make_tuple(result.first, result.second);
|
||||
},
|
||||
"a"_a,
|
||||
"UPLO"_a = "L",
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
R"pbdoc(
|
||||
Compute the eigenvalues and eigenvectors of a complex Hermitian or
|
||||
real symmetric matrix.
|
||||
|
||||
This function supports arrays with at least 2 dimensions. When the input
|
||||
has more than two dimensions, the eigenvalues and eigenvectors are
|
||||
computed for each matrix in the last two dimensions.
|
||||
|
||||
Args:
|
||||
a (array): Input array. Must be a real symmetric or complex
|
||||
Hermitian matrix.
|
||||
UPLO (str, optional): Whether to use the upper (``"U"``) or
|
||||
lower (``"L"``) triangle of the matrix. Default: ``"L"``.
|
||||
stream (Stream, optional): Stream or device. Defaults to ``None``
|
||||
in which case the default stream of the default device is used.
|
||||
|
||||
Returns:
|
||||
Tuple[array, array]:
|
||||
A tuple containing the eigenvalues in ascending order and
|
||||
the normalized eigenvectors. The column ``v[:, i]`` is the
|
||||
eigenvector corresponding to the i-th eigenvalue.
|
||||
|
||||
Note:
|
||||
The input matrix is assumed to be symmetric (or Hermitian). Only
|
||||
the selected triangle is used. No checks for symmetry are performed.
|
||||
|
||||
Example:
|
||||
>>> A = mx.array([[1., -2.], [-2., 1.]])
|
||||
>>> w, v = mx.linalg.eigh(A, stream=mx.cpu)
|
||||
>>> w
|
||||
array([-1., 3.], dtype=float32)
|
||||
>>> v
|
||||
array([[ 0.707107, -0.707107],
|
||||
[ 0.707107, 0.707107]], dtype=float32)
|
||||
)pbdoc");
|
||||
}
|
||||
|
@@ -268,6 +268,57 @@ class TestLinalg(mlx_tests.MLXTestCase):
|
||||
with self.assertRaises(ValueError):
|
||||
mx.linalg.cross(a, b)
|
||||
|
||||
def test_eigh(self):
|
||||
tols = {"atol": 1e-5, "rtol": 1e-5}
|
||||
|
||||
def check_eigs_and_vecs(A_np, kwargs={}):
|
||||
A = mx.array(A_np)
|
||||
eig_vals, eig_vecs = mx.linalg.eigh(A, stream=mx.cpu, **kwargs)
|
||||
eig_vals_np, _ = np.linalg.eigh(A_np, **kwargs)
|
||||
self.assertTrue(np.allclose(eig_vals, eig_vals_np, **tols))
|
||||
self.assertTrue(
|
||||
mx.allclose(A @ eig_vecs, eig_vals[..., None, :] * eig_vecs, **tols)
|
||||
)
|
||||
|
||||
eig_vals_only = mx.linalg.eigvalsh(A, stream=mx.cpu, **kwargs)
|
||||
self.assertTrue(mx.allclose(eig_vals, eig_vals_only, **tols))
|
||||
|
||||
# Test a simple 2x2 symmetric matrix
|
||||
A_np = np.array([[1.0, 2.0], [2.0, 4.0]], dtype=np.float32)
|
||||
check_eigs_and_vecs(A_np)
|
||||
|
||||
# Test a larger random symmetric matrix
|
||||
n = 5
|
||||
np.random.seed(1)
|
||||
A_np = np.random.randn(n, n).astype(np.float32)
|
||||
A_np = (A_np + A_np.T) / 2
|
||||
check_eigs_and_vecs(A_np)
|
||||
|
||||
# Test with upper triangle
|
||||
check_eigs_and_vecs(A_np, {"UPLO": "U"})
|
||||
|
||||
# Test with batched input
|
||||
A_np = np.random.randn(3, n, n).astype(np.float32)
|
||||
A_np = (A_np + np.transpose(A_np, (0, 2, 1))) / 2
|
||||
check_eigs_and_vecs(A_np)
|
||||
|
||||
# Test error cases
|
||||
with self.assertRaises(ValueError):
|
||||
mx.linalg.eigh(mx.array([1.0, 2.0])) # 1D array
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
mx.linalg.eigh(
|
||||
mx.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
|
||||
) # Non-square matrix
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
mx.linalg.eigvalsh(mx.array([1.0, 2.0])) # 1D array
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
mx.linalg.eigvalsh(
|
||||
mx.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
|
||||
) # Non-square matrix
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
Reference in New Issue
Block a user