mirror of
https://github.com/ml-explore/mlx.git
synced 2025-10-19 00:04:41 +08:00
Eigenvalues and eigenvectors (#1334)
* initial eigvalsh * add compute_vectors * add compute_vectors_ * return a pair * add eigh to return only eigenvectors * fixed typo * merge merge Eighvalsh and Eigh into a single primitive * use the same primate with the flag * fix primatives * use MULTI * fix eval_gpu * fix decleration * rename EighPrimitive to Eigh * tests * tests * fix rebase and format * cleanup lapack * format * add cblas.h --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
@@ -405,4 +405,85 @@ void init_linalg(nb::module_& parent_module) {
|
||||
Returns:
|
||||
array: The cross product of ``a`` and ``b`` along the specified axis.
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"eigvalsh",
|
||||
&eigvalsh,
|
||||
"a"_a,
|
||||
"UPLO"_a = "L",
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
R"pbdoc(
|
||||
Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
|
||||
|
||||
This function supports arrays with at least 2 dimensions. When the
|
||||
input has more than two dimensions, the eigenvalues are computed for
|
||||
each matrix in the last two dimensions.
|
||||
|
||||
Args:
|
||||
a (array): Input array. Must be a real symmetric or complex
|
||||
Hermitian matrix.
|
||||
UPLO (str, optional): Whether to use the upper (``"U"``) or
|
||||
lower (``"L"``) triangle of the matrix. Default: ``"L"``.
|
||||
stream (Stream, optional): Stream or device. Defaults to ``None``
|
||||
in which case the default stream of the default device is used.
|
||||
|
||||
Returns:
|
||||
array: The eigenvalues in ascending order.
|
||||
|
||||
Note:
|
||||
The input matrix is assumed to be symmetric (or Hermitian). Only
|
||||
the selected triangle is used. No checks for symmetry are performed.
|
||||
|
||||
Example:
|
||||
>>> A = mx.array([[1., -2.], [-2., 1.]])
|
||||
>>> eigenvalues = mx.linalg.eigvalsh(A, stream=mx.cpu)
|
||||
>>> eigenvalues
|
||||
array([-1., 3.], dtype=float32)
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"eigh",
|
||||
[](const array& a, const std::string UPLO, StreamOrDevice s) {
|
||||
// TODO avoid cast?
|
||||
auto result = eigh(a, UPLO, s);
|
||||
return nb::make_tuple(result.first, result.second);
|
||||
},
|
||||
"a"_a,
|
||||
"UPLO"_a = "L",
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
R"pbdoc(
|
||||
Compute the eigenvalues and eigenvectors of a complex Hermitian or
|
||||
real symmetric matrix.
|
||||
|
||||
This function supports arrays with at least 2 dimensions. When the input
|
||||
has more than two dimensions, the eigenvalues and eigenvectors are
|
||||
computed for each matrix in the last two dimensions.
|
||||
|
||||
Args:
|
||||
a (array): Input array. Must be a real symmetric or complex
|
||||
Hermitian matrix.
|
||||
UPLO (str, optional): Whether to use the upper (``"U"``) or
|
||||
lower (``"L"``) triangle of the matrix. Default: ``"L"``.
|
||||
stream (Stream, optional): Stream or device. Defaults to ``None``
|
||||
in which case the default stream of the default device is used.
|
||||
|
||||
Returns:
|
||||
Tuple[array, array]:
|
||||
A tuple containing the eigenvalues in ascending order and
|
||||
the normalized eigenvectors. The column ``v[:, i]`` is the
|
||||
eigenvector corresponding to the i-th eigenvalue.
|
||||
|
||||
Note:
|
||||
The input matrix is assumed to be symmetric (or Hermitian). Only
|
||||
the selected triangle is used. No checks for symmetry are performed.
|
||||
|
||||
Example:
|
||||
>>> A = mx.array([[1., -2.], [-2., 1.]])
|
||||
>>> w, v = mx.linalg.eigh(A, stream=mx.cpu)
|
||||
>>> w
|
||||
array([-1., 3.], dtype=float32)
|
||||
>>> v
|
||||
array([[ 0.707107, -0.707107],
|
||||
[ 0.707107, 0.707107]], dtype=float32)
|
||||
)pbdoc");
|
||||
}
|
||||
|
Reference in New Issue
Block a user