Quantized matmul fix (#677)

* Fix qmv for small or unaligned matrices

* Fix qmm
This commit is contained in:
Angelos Katharopoulos
2024-02-12 18:54:21 -08:00
committed by GitHub
parent 4cc70290f7
commit 40c108766b
3 changed files with 81 additions and 9 deletions

View File

@@ -165,6 +165,70 @@ class TestQuantized(mlx_tests.MLXTestCase):
self.assertEqual(y_q.shape, y_hat.shape)
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
def test_non_multiples(self):
w = mx.random.normal(shape=(33, 256))
w_q, scales, biases = mx.quantize(w)
w_hat = mx.dequantize(w_q, scales, biases)
# Test qmv
x = mx.random.normal(shape=(1, 256))
y_q = mx.quantized_matmul(x, w_q, scales, biases, transpose=True)
y_hat = x @ w_hat.T
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
# Test qmm_t
x = mx.random.normal(shape=(10, 256))
y_q = mx.quantized_matmul(x, w_q, scales, biases, transpose=True)
y_hat = x @ w_hat.T
self.assertEqual(y_q.shape, y_hat.shape)
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
# Test qvm
x = mx.random.normal(shape=(1, 33))
y_q = mx.quantized_matmul(x, w_q, scales, biases, transpose=False)
y_hat = x @ w_hat
self.assertEqual(y_q.shape, y_hat.shape)
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
# Test qmm
x = mx.random.normal(shape=(10, 33))
y_q = mx.quantized_matmul(x, w_q, scales, biases, transpose=False)
y_hat = x @ w_hat
self.assertEqual(y_q.shape, y_hat.shape)
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
# Smaller than 8
w = mx.random.normal(shape=(3, 256))
w_q, scales, biases = mx.quantize(w)
w_hat = mx.dequantize(w_q, scales, biases)
# Test qmv
x = mx.random.normal(shape=(1, 256))
y_q = mx.quantized_matmul(x, w_q, scales, biases, transpose=True)
y_hat = x @ w_hat.T
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
# Test qmm_t
x = mx.random.normal(shape=(10, 256))
y_q = mx.quantized_matmul(x, w_q, scales, biases, transpose=True)
y_hat = x @ w_hat.T
self.assertEqual(y_q.shape, y_hat.shape)
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
# Test qvm
x = mx.random.normal(shape=(1, 3))
y_q = mx.quantized_matmul(x, w_q, scales, biases, transpose=False)
y_hat = x @ w_hat
self.assertEqual(y_q.shape, y_hat.shape)
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
# Test qmm
x = mx.random.normal(shape=(10, 3))
y_q = mx.quantized_matmul(x, w_q, scales, biases, transpose=False)
y_hat = x @ w_hat
self.assertEqual(y_q.shape, y_hat.shape)
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
if __name__ == "__main__":
unittest.main()