Use int64 stride everywhere (#1671)

* use int64 stride everywhere

* fix ext

* fix ext

* more shape + cleanup

* one more

* few more
This commit is contained in:
Awni Hannun
2024-12-09 11:09:02 -08:00
committed by GitHub
parent 35b412c099
commit 40c62c1321
102 changed files with 1262 additions and 1705 deletions

View File

@@ -42,12 +42,12 @@ void seed(uint64_t seed);
/** Generate an array with type uint32 filled with random bits. */
array bits(
const std::vector<int>& shape,
const Shape& shape,
int width,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
inline array bits(
const std::vector<int>& shape,
const Shape& shape,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return bits(shape, 4, key, s);
@@ -63,7 +63,7 @@ array split(const array& key, int num, StreamOrDevice s = {});
array uniform(
const array& low,
const array& high,
const std::vector<int>& shape,
const Shape& shape,
Dtype dtype = float32,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
@@ -72,7 +72,7 @@ template <typename T, typename U>
array uniform(
T low,
U high,
const std::vector<int>& shape,
const Shape& shape,
Dtype dtype = float32,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
@@ -81,12 +81,12 @@ array uniform(
/** Generate uniform random numbers between 0 and 1. */
array uniform(
const std::vector<int>& shape,
const Shape& shape,
Dtype dtype,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
inline array uniform(
const std::vector<int>& shape,
const Shape& shape,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return uniform(shape, float32, key);
@@ -94,14 +94,14 @@ inline array uniform(
/** Generate samples from the standard normal distribution. */
array normal(
const std::vector<int>& shape,
const Shape& shape,
Dtype dtype,
const float loc,
const float scale,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
inline array normal(
const std::vector<int>& shape,
const Shape& shape,
const float loc,
const float scale,
const std::optional<array>& key = std::nullopt,
@@ -109,14 +109,14 @@ inline array normal(
return normal(shape, float32, loc, scale, key, s);
}
inline array normal(
const std::vector<int>& shape,
const Shape& shape,
const Dtype dtype,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return normal(shape, dtype, 0.0, 1.0, key, s);
}
inline array normal(
const std::vector<int>& shape,
const Shape& shape,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return normal(shape, float32, 0.0, 1.0, key, s);
@@ -126,7 +126,7 @@ inline array normal(
array multivariate_normal(
const array& mean,
const array& cov,
const std::vector<int>& shape,
const Shape& shape,
Dtype dtype,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
@@ -135,7 +135,7 @@ array multivariate_normal(
array randint(
const array& low,
const array& high,
const std::vector<int>& shape,
const Shape& shape,
Dtype dtype = int32,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
@@ -144,7 +144,7 @@ template <typename T, typename U>
array randint(
T low,
U high,
const std::vector<int>& shape,
const Shape& shape,
Dtype dtype = int32,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
@@ -154,7 +154,7 @@ array randint(
/** Generate binary variables with probability to be true equal to p */
array bernoulli(
const array& p,
const std::vector<int>& shape,
const Shape& shape,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
array bernoulli(
@@ -173,7 +173,7 @@ array bernoulli(
template <typename T>
array bernoulli(
T p,
const std::vector<int>& shape,
const Shape& shape,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return bernoulli(array(p), shape, key, s);
@@ -186,7 +186,7 @@ array bernoulli(
array truncated_normal(
const array& lower,
const array& upper,
const std::vector<int>& shape,
const Shape& shape,
Dtype dtype = float32,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
@@ -199,7 +199,7 @@ array truncated_normal(
StreamOrDevice s = {});
array gumbel(
const std::vector<int>& shape,
const Shape& shape,
Dtype dtype = float32,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
@@ -207,7 +207,7 @@ array gumbel(
array categorical(
const array& logits,
int axis,
const std::vector<int>& shape,
const Shape& shape,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
@@ -226,14 +226,14 @@ array categorical(
/** Generate samples from the laplace distribution. */
array laplace(
const std::vector<int>& shape,
const Shape& shape,
Dtype dtype,
const float loc,
const float scale,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
inline array laplace(
const std::vector<int>& shape,
const Shape& shape,
const float loc,
const float scale,
const std::optional<array>& key = std::nullopt,
@@ -241,14 +241,14 @@ inline array laplace(
return laplace(shape, float32, loc, scale, key, s);
}
inline array laplace(
const std::vector<int>& shape,
const Shape& shape,
const Dtype dtype,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return laplace(shape, dtype, 0.0, 1.0, key, s);
}
inline array laplace(
const std::vector<int>& shape,
const Shape& shape,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return laplace(shape, float32, 0.0, 1.0, key, s);