[CUDA] Implement DynamicSlice/DynamicSliceUpdate (#2533)

* Move DynamicSlice to gpu/primitives

* Implement compute_dynamic_offset in CUDA
This commit is contained in:
Cheng 2025-08-26 07:31:39 +09:00 committed by GitHub
parent 2ca75bb529
commit 4822c3dbe9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 226 additions and 134 deletions

View File

@ -15,8 +15,8 @@ void copy_gpu_inplace(
int64_t offset_out, int64_t offset_out,
CopyType ctype, CopyType ctype,
const Stream& s, const Stream& s,
const std::optional<array>& dynamic_offset_in, std::optional<array> dynamic_offset_in,
const std::optional<array>& dynamic_offset_out) { std::optional<array> dynamic_offset_out) {
if (out.size() == 0) { if (out.size() == 0) {
return; return;
} }
@ -44,6 +44,16 @@ void copy_gpu_inplace(
strides_vec[0]); strides_vec[0]);
} else { } else {
if (dynamic_offset_in || dynamic_offset_out) { if (dynamic_offset_in || dynamic_offset_out) {
if (!dynamic_offset_in) {
dynamic_offset_in = array(0, int64);
encoder.add_temporary(*dynamic_offset_in);
}
if (!dynamic_offset_out) {
dynamic_offset_out = array(0, int64);
encoder.add_temporary(*dynamic_offset_out);
}
encoder.set_input_array(*dynamic_offset_in);
encoder.set_input_array(*dynamic_offset_out);
copy_general_dynamic( copy_general_dynamic(
encoder, encoder,
ctype, ctype,
@ -54,8 +64,8 @@ void copy_gpu_inplace(
shape_collapsed, shape_collapsed,
strides_vec[0], strides_vec[0],
strides_vec[1], strides_vec[1],
dynamic_offset_in ? *dynamic_offset_in : array(0, int64), *dynamic_offset_in,
dynamic_offset_out ? *dynamic_offset_out : array(0, int64)); *dynamic_offset_out);
} else { } else {
copy_general( copy_general(
encoder, encoder,

View File

@ -110,7 +110,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
args.append<int32_t>(src.ndim()); args.append<int32_t>(src.ndim());
args.append_ndim(slice_sizes_); args.append_ndim(slice_sizes_);
args.append(slice_size); args.append(slice_size);
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end())); args.append(axes_);
append_indices_arg(args, inputs, nidx, idx_ndim); append_indices_arg(args, inputs, nidx, idx_ndim);
std::string kernel_name = fmt::format( std::string kernel_name = fmt::format(
@ -211,7 +211,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
args.append_ndim(out.shape()); args.append_ndim(out.shape());
args.append_ndim(out.strides()); args.append_ndim(out.strides());
args.append<int32_t>(out.ndim()); args.append<int32_t>(out.ndim());
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end())); args.append(axes_);
append_indices_arg(args, inputs, nidx, idx_ndim); append_indices_arg(args, inputs, nidx, idx_ndim);
std::string kernel_name = fmt::format( std::string kernel_name = fmt::format(

View File

@ -46,6 +46,11 @@ struct KernelArgs {
append_ptr(std::get<SmallVector<T>>(storage_.back()).data()); append_ptr(std::get<SmallVector<T>>(storage_.back()).data());
} }
template <typename T>
void append(const std::vector<T>& vec) {
append(SmallVector<T>(vec.begin(), vec.end()));
}
// Make sure the arg is copied to an array with size of NDIM. // Make sure the arg is copied to an array with size of NDIM.
template <size_t NDIM = MAX_NDIM, typename T> template <size_t NDIM = MAX_NDIM, typename T>
void append_ndim(SmallVector<T> vec) { void append_ndim(SmallVector<T> vec) {

View File

@ -24,8 +24,6 @@ namespace mlx::core {
} }
NO_GPU(BlockMaskedMM) NO_GPU(BlockMaskedMM)
NO_GPU(DynamicSlice)
NO_GPU(DynamicSliceUpdate)
NO_GPU(FFT) NO_GPU(FFT)
NO_GPU(GatherMM) NO_GPU(GatherMM)
NO_GPU(GatherQMM) NO_GPU(GatherQMM)

View File

@ -1,8 +1,11 @@
// Copyright © 2025 Apple Inc. // Copyright © 2025 Apple Inc.
#include "mlx/backend/common/slicing.h" #include "mlx/backend/common/slicing.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/jit_module.h"
#include "mlx/backend/gpu/copy.h" #include "mlx/backend/gpu/copy.h"
#include "mlx/backend/gpu/slicing.h" #include "mlx/backend/gpu/slicing.h"
#include "mlx/dtype_utils.h"
#include <numeric> #include <numeric>
@ -38,4 +41,71 @@ void concatenate_gpu(
} }
} }
array compute_dynamic_offset(
const array& indices,
const Strides& strides,
const std::vector<int>& axes,
const Stream& s) {
Dtype dtype = indices.dtype();
int nidx = axes.size();
std::string module_name =
fmt::format("compute_dynamic_offset_{}_{}", dtype_to_string(dtype), nidx);
std::string kernel_name = fmt::format(
"mlx::core::cu::compute_dynamic_offset<{}, {}>",
dtype_to_cuda_type(dtype),
nidx);
cu::JitModule& mod = cu::get_jit_module(s.device, module_name, [&]() {
std::string source = R"(
#include "mlx/backend/cuda/device/utils.cuh"
namespace mlx::core::cu {
template <typename T, int NIDX>
__global__ void compute_dynamic_offset(
const T* indices,
int64_t* offset,
const __grid_constant__ Strides strides,
const __grid_constant__ cuda::std::array<int, NIDX> axes) {
int64_t acc = 0;
#pragma unroll
for (int i = 0; i < NIDX; ++i) {
acc += indices[i] * strides[axes[i]];
}
*offset = acc;
}
} // namespace mlx::core::cu
)";
return std::make_tuple(false, std::move(source), std::vector{kernel_name});
});
// Prepare output.
array offset({1}, int64, nullptr, {});
bool donate = indices.is_donatable() &&
(indices.data_size() * indices.itemsize()) >= offset.itemsize();
if (donate) {
offset.copy_shared_buffer(indices);
} else {
offset.set_data(allocator::malloc(offset.itemsize()));
}
auto& encoder = cu::get_command_encoder(s);
encoder.add_temporary(offset);
encoder.set_input_array(indices);
encoder.set_output_array(offset);
cu::KernelArgs args;
args.append(indices);
args.append(offset);
args.append_ndim(strides);
args.append(axes);
auto kernel = mod.get_kernel(kernel_name);
encoder.add_kernel_node(kernel, 1, 1, 0, args.args());
return offset;
}
} // namespace mlx::core } // namespace mlx::core

View File

@ -20,8 +20,8 @@ void copy_gpu_inplace(
int64_t o_offset, int64_t o_offset,
CopyType ctype, CopyType ctype,
const Stream& s, const Stream& s,
const std::optional<array>& dynamic_i_offset = std::nullopt, std::optional<array> dynamic_i_offset = std::nullopt,
const std::optional<array>& dynamic_o_offset = std::nullopt); std::optional<array> dynamic_o_offset = std::nullopt);
void copy_gpu(const array& src, array& out, CopyType ctype, const Stream& s); void copy_gpu(const array& src, array& out, CopyType ctype, const Stream& s);
void copy_gpu(const array& src, array& out, CopyType ctype); void copy_gpu(const array& src, array& out, CopyType ctype);

View File

@ -80,6 +80,74 @@ void Depends::eval_gpu(
eval(inputs, outputs); eval(inputs, outputs);
} }
void DynamicSlice::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("DynamicSlice::eval_gpu");
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
auto& start = inputs[1];
out.set_data(allocator::malloc(out.nbytes()));
auto s = stream();
auto in_offset = compute_dynamic_offset(start, in.strides(), axes_, s);
copy_gpu_inplace(
/* const array& src = */ in,
/* array& dst = */ out,
/* const Shape& data_shape = */ out.shape(),
/* const Strides& i_strides = */ in.strides(),
/* const Strides& o_strides = */ out.strides(),
/* int64_t i_offset = */ 0,
/* int64_t o_offset = */ 0,
/* CopyType ctype = */ CopyType::GeneralGeneral,
/* const Stream& s = */ s,
/* std::optional<array> dynamic_i_offset = */ std::move(in_offset),
/* std::optional<array> dynamic_o_offset = */ std::nullopt);
}
void DynamicSliceUpdate::eval_gpu(
const std::vector<array>& inputs,
array& out) {
MLX_PROFILER_RANGE("DynamicSliceUpdate::eval_gpu");
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
auto& upd = inputs[1];
auto& start_indices = inputs[2];
if (upd.size() == 0) {
out.copy_shared_buffer(in);
return;
}
// Copy or donate input to output
auto s = stream();
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy_gpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, s);
auto out_offset =
compute_dynamic_offset(start_indices, out.strides(), axes_, s);
copy_gpu_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const Shape& data_shape = */ upd.shape(),
/* const Strides& i_strides = */ upd.strides(),
/* const Strides& o_strides = */ out.strides(),
/* int64_t i_offset = */ 0,
/* int64_t o_offset = */ 0,
/* CopyType ctype = */ CopyType::GeneralGeneral,
/* const Stream& s = */ s,
/* std::optional<array> dynamic_i_offset = */ std::nullopt,
/* std::optional<array> dynamic_o_offset = */ std::move(out_offset));
}
void ExpandDims::eval_gpu(const std::vector<array>& inputs, array& out) { void ExpandDims::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("ExpandDims::eval_gpu"); MLX_PROFILER_RANGE("ExpandDims::eval_gpu");
eval(inputs, out); eval(inputs, out);

View File

@ -27,4 +27,10 @@ void pad_gpu(
const Shape& low_pad_size, const Shape& low_pad_size,
const Stream& s); const Stream& s);
array compute_dynamic_offset(
const array& indices,
const Strides& strides,
const std::vector<int>& axes,
const Stream& s);
} // namespace mlx::core } // namespace mlx::core

View File

@ -20,8 +20,8 @@ void copy_gpu_inplace(
int64_t out_offset, int64_t out_offset,
CopyType ctype, CopyType ctype,
const Stream& s, const Stream& s,
const std::optional<array>& dynamic_i_offset /* = std::nullopt */, std::optional<array> dynamic_i_offset /* = std::nullopt */,
const std::optional<array>& dynamic_o_offset /* = std::nullopt */) { std::optional<array> dynamic_o_offset /* = std::nullopt */) {
if (out.size() == 0) { if (out.size() == 0) {
return; return;
} }

View File

@ -4,7 +4,6 @@
#include <numeric> #include <numeric>
#include <sstream> #include <sstream>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/common/slicing.h" #include "mlx/backend/common/slicing.h"
#include "mlx/backend/common/utils.h" #include "mlx/backend/common/utils.h"
#include "mlx/backend/gpu/copy.h" #include "mlx/backend/gpu/copy.h"
@ -25,60 +24,6 @@ void arange_set_scalars(T start, T next, metal::CommandEncoder& enc) {
enc.set_bytes(step, 1); enc.set_bytes(step, 1);
} }
static array compute_dynamic_offset(
const array& indices,
const Strides& strides,
const std::vector<int>& axes,
Stream s) {
auto& d = metal::device(s.device);
// Kernel to compute offset here.
array offset({1}, int64, nullptr, {});
bool donate = indices.is_donatable() &&
(indices.data_size() * indices.itemsize()) >= offset.itemsize();
if (donate) {
offset.copy_shared_buffer(indices);
} else {
offset.set_data(allocator::malloc(offset.itemsize()));
}
d.add_temporary(offset, s.index);
auto dtype = indices.dtype();
std::string lib_name = "compute_dynamic_offset_" + type_to_name(dtype);
auto lib = d.get_library(lib_name, [dtype]() {
return fmt::format(
R"(
[[kernel]] void compute_dynamic_offset_{0}(
constant const {1}* indices [[buffer(0)]],
device int64_t& offset [[buffer(1)]],
constant const int64_t* strides [[buffer(2)]],
constant const int* axes [[buffer(3)]],
constant const int& n_axes [[buffer(4)]],
uint index [[thread_position_in_grid]]) {{
int64_t acc = 0;
for (int i = 0; i < n_axes; ++i) {{
acc += indices[i] * strides[axes[i]];
}}
offset = acc;
}})",
type_to_name(dtype),
get_type_string(dtype));
});
auto kernel = d.get_kernel(lib_name, lib);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(indices, 0);
compute_encoder.set_output_array(offset, 1);
compute_encoder.set_vector_bytes(strides, 2);
compute_encoder.set_vector_bytes(axes, 3);
int n_axes = axes.size();
compute_encoder.set_bytes(n_axes, 4);
MTL::Size dims = MTL::Size(1, 1, 1);
compute_encoder.dispatch_threads(dims, dims);
return offset;
}
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) { void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 0); assert(inputs.size() == 0);
out.set_data(allocator::malloc(out.nbytes())); out.set_data(allocator::malloc(out.nbytes()));
@ -256,72 +201,6 @@ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
compute_encoder.dispatch_threads(grid_dims, group_dims); compute_encoder.dispatch_threads(grid_dims, group_dims);
} }
void DynamicSlice::eval_gpu(const std::vector<array>& inputs, array& out) {
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
auto& start = inputs[1];
out.set_data(allocator::malloc(out.nbytes()));
auto s = stream();
auto in_offset = compute_dynamic_offset(start, in.strides(), axes_, s);
copy_gpu_inplace(
/* const array& src = */ in,
/* array& dst = */ out,
/* const Shape& data_shape = */ out.shape(),
/* const Strides& i_strides = */ in.strides(),
/* const Strides& o_strides = */ out.strides(),
/* int64_t i_offset = */ 0,
/* int64_t o_offset = */ 0,
/* CopyType ctype = */ CopyType::GeneralGeneral,
/* const Stream& s = */ s,
/* const std::optional<array>& dynamic_i_offset = */ in_offset,
/* const std::optional<array>& dynamic_o_offset = */ std::nullopt);
}
void DynamicSliceUpdate::eval_gpu(
const std::vector<array>& inputs,
array& out) {
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
auto& upd = inputs[1];
auto& start_indices = inputs[2];
if (upd.size() == 0) {
out.copy_shared_buffer(in);
return;
}
// Copy or donate input to output
auto s = stream();
auto& d = metal::device(s.device);
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy_gpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, s);
auto out_offset =
compute_dynamic_offset(start_indices, out.strides(), axes_, s);
copy_gpu_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const Shape& data_shape = */ upd.shape(),
/* const Strides& i_strides = */ upd.strides(),
/* const Strides& o_strides = */ out.strides(),
/* int64_t i_offset = */ 0,
/* int64_t o_offset = */ 0,
/* CopyType ctype = */ CopyType::GeneralGeneral,
/* const Stream& s = */ s,
/* const std::optional<array>& dynamic_i_offset = */ std::nullopt,
/* const std::optional<array>& dynamic_o_offset = */ out_offset);
}
void QRF::eval_gpu( void QRF::eval_gpu(
const std::vector<array>& inputs, const std::vector<array>& inputs,
std::vector<array>& outputs) { std::vector<array>& outputs) {

View File

@ -2,9 +2,12 @@
#include <numeric> #include <numeric>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/gpu/copy.h" #include "mlx/backend/gpu/copy.h"
#include "mlx/backend/gpu/slicing.h" #include "mlx/backend/gpu/slicing.h"
#include "mlx/backend/metal/device.h" #include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels.h"
#include "mlx/backend/metal/utils.h"
namespace mlx::core { namespace mlx::core {
@ -39,4 +42,58 @@ void concatenate_gpu(
} }
} }
array compute_dynamic_offset(
const array& indices,
const Strides& strides,
const std::vector<int>& axes,
const Stream& s) {
auto& d = metal::device(s.device);
// Kernel to compute offset here.
array offset({1}, int64, nullptr, {});
bool donate = indices.is_donatable() &&
(indices.data_size() * indices.itemsize()) >= offset.itemsize();
if (donate) {
offset.copy_shared_buffer(indices);
} else {
offset.set_data(allocator::malloc(offset.itemsize()));
}
d.add_temporary(offset, s.index);
auto dtype = indices.dtype();
std::string lib_name = "compute_dynamic_offset_" + type_to_name(dtype);
auto lib = d.get_library(lib_name, [dtype]() {
return fmt::format(
R"(
[[kernel]] void compute_dynamic_offset_{0}(
constant const {1}* indices [[buffer(0)]],
device int64_t& offset [[buffer(1)]],
constant const int64_t* strides [[buffer(2)]],
constant const int* axes [[buffer(3)]],
constant const int& n_axes [[buffer(4)]],
uint index [[thread_position_in_grid]]) {{
int64_t acc = 0;
for (int i = 0; i < n_axes; ++i) {{
acc += indices[i] * strides[axes[i]];
}}
offset = acc;
}})",
type_to_name(dtype),
get_type_string(dtype));
});
auto kernel = d.get_kernel(lib_name, lib);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(indices, 0);
compute_encoder.set_output_array(offset, 1);
compute_encoder.set_vector_bytes(strides, 2);
compute_encoder.set_vector_bytes(axes, 3);
int n_axes = axes.size();
compute_encoder.set_bytes(n_axes, 4);
MTL::Size dims = MTL::Size(1, 1, 1);
compute_encoder.dispatch_threads(dims, dims);
return offset;
}
} // namespace mlx::core } // namespace mlx::core

View File

@ -1,7 +1,6 @@
cuda_skip = { cuda_skip = {
"TestLoad.test_load_f8_e4m3", "TestLoad.test_load_f8_e4m3",
"TestLayers.test_quantized_embedding", "TestLayers.test_quantized_embedding",
"TestOps.test_dynamic_slicing",
# Block masked matmul NYI # Block masked matmul NYI
"TestBlas.test_block_masked_matmul", "TestBlas.test_block_masked_matmul",
# Gather matmul NYI # Gather matmul NYI