mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 09:21:16 +08:00
Add support for grouped 1D convolutions to the nn API (#1444)
* Fix the weight shape for grouped convolutions from the nn API. * Add tests. * Pre-commit formatting. * Add input validation. * Use integer division instead of casting. * docs * nit --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
b1e2b53c2d
commit
4a64d4bff1
@ -25,6 +25,8 @@ class Conv1d(Module):
|
|||||||
padding (int, optional): How many positions to 0-pad the input with.
|
padding (int, optional): How many positions to 0-pad the input with.
|
||||||
Default: ``0``.
|
Default: ``0``.
|
||||||
dilation (int, optional): The dilation of the convolution.
|
dilation (int, optional): The dilation of the convolution.
|
||||||
|
groups (int, optional): The number of groups for the convolution.
|
||||||
|
Default: ``1``.
|
||||||
bias (bool, optional): If ``True`` add a learnable bias to the output.
|
bias (bool, optional): If ``True`` add a learnable bias to the output.
|
||||||
Default: ``True``
|
Default: ``True``
|
||||||
"""
|
"""
|
||||||
@ -37,15 +39,22 @@ class Conv1d(Module):
|
|||||||
stride: int = 1,
|
stride: int = 1,
|
||||||
padding: int = 0,
|
padding: int = 0,
|
||||||
dilation: int = 1,
|
dilation: int = 1,
|
||||||
|
groups: int = 1,
|
||||||
bias: bool = True,
|
bias: bool = True,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
|
if in_channels % groups != 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"The number of input channels ({in_channels}) must be "
|
||||||
|
f"divisible by the number of groups ({groups})"
|
||||||
|
)
|
||||||
|
|
||||||
scale = math.sqrt(1 / (in_channels * kernel_size))
|
scale = math.sqrt(1 / (in_channels * kernel_size))
|
||||||
self.weight = mx.random.uniform(
|
self.weight = mx.random.uniform(
|
||||||
low=-scale,
|
low=-scale,
|
||||||
high=scale,
|
high=scale,
|
||||||
shape=(out_channels, kernel_size, in_channels),
|
shape=(out_channels, kernel_size, in_channels // groups),
|
||||||
)
|
)
|
||||||
if bias:
|
if bias:
|
||||||
self.bias = mx.zeros((out_channels,))
|
self.bias = mx.zeros((out_channels,))
|
||||||
@ -53,17 +62,21 @@ class Conv1d(Module):
|
|||||||
self.padding = padding
|
self.padding = padding
|
||||||
self.dilation = dilation
|
self.dilation = dilation
|
||||||
self.stride = stride
|
self.stride = stride
|
||||||
|
self.groups = groups
|
||||||
|
|
||||||
def _extra_repr(self):
|
def _extra_repr(self):
|
||||||
return (
|
return (
|
||||||
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
||||||
f"kernel_size={self.weight.shape[1]}, stride={self.stride}, "
|
f"kernel_size={self.weight.shape[1]}, stride={self.stride}, "
|
||||||
f"padding={self.padding}, dilation={self.dilation}, "
|
f"padding={self.padding}, dilation={self.dilation}, "
|
||||||
|
f"groups={self.groups}, "
|
||||||
f"bias={'bias' in self}"
|
f"bias={'bias' in self}"
|
||||||
)
|
)
|
||||||
|
|
||||||
def __call__(self, x):
|
def __call__(self, x):
|
||||||
y = mx.conv1d(x, self.weight, self.stride, self.padding, self.dilation)
|
y = mx.conv1d(
|
||||||
|
x, self.weight, self.stride, self.padding, self.dilation, self.groups
|
||||||
|
)
|
||||||
if "bias" in self:
|
if "bias" in self:
|
||||||
y = y + self.bias
|
y = y + self.bias
|
||||||
return y
|
return y
|
||||||
|
@ -650,6 +650,14 @@ class TestLayers(mlx_tests.MLXTestCase):
|
|||||||
c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, bias=False)
|
c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, bias=False)
|
||||||
self.assertTrue("bias" not in c.parameters())
|
self.assertTrue("bias" not in c.parameters())
|
||||||
|
|
||||||
|
groups = C_in
|
||||||
|
c = nn.Conv1d(
|
||||||
|
in_channels=C_in, out_channels=C_out, kernel_size=ks, groups=groups
|
||||||
|
)
|
||||||
|
y = c(x)
|
||||||
|
self.assertEqual(c.weight.shape, (C_out, ks, C_in // groups))
|
||||||
|
self.assertEqual(y.shape, (N, L - ks + 1, C_out))
|
||||||
|
|
||||||
def test_conv2d(self):
|
def test_conv2d(self):
|
||||||
x = mx.ones((4, 8, 8, 3))
|
x = mx.ones((4, 8, 8, 3))
|
||||||
c = nn.Conv2d(3, 1, 8)
|
c = nn.Conv2d(3, 1, 8)
|
||||||
|
Loading…
Reference in New Issue
Block a user