add transformer with dropout, fix transformer ffm, layernorm order

This commit is contained in:
Jyun1998 2023-12-15 03:26:17 +08:00
parent fb675de30d
commit 4bd3c02c00

View File

@ -7,7 +7,49 @@ import mlx.core as mx
from mlx.nn.layers.base import Module
from mlx.nn.layers.linear import Linear
from mlx.nn.layers.normalization import LayerNorm
from mlx.nn.layers.dropout import Dropout
from mlx.nn.layers.positional_encoding import SinusoidalPositionalEncoding
class MyPosEncoding(SinusoidalPositionalEncoding):
def __init__(
self,
dims: int,
min_freq: float = 0.0001,
max_freq: float = 1,
scale: Optional[float] = None,
cos_first: bool = False,
full_turns: bool = False,
):
super().__init__(
dims,
min_freq=min_freq,
max_freq=max_freq,
scale=scale,
cos_first=cos_first,
full_turns=full_turns
)
self.dims = dims
def __call__(self, x):
seq_length = x.shape[1] # Assuming x.shape [batch_size, sequence_length, embedding_dim]
position = mx.arange(seq_length)[..., None] * self._sigmas
# Generate positional encodings
div_term = mx.exp(mx.arange(0, self.dims, 2) * -(math.log(10000.0) / self.dims))
sinusoid_inp = position * div_term
y = mx.zeros((seq_length, self.dims))
if self.cos_first:
y[:, 0::2] = mx.cos(sinusoid_inp)
y[:, 1::2] = mx.sin(sinusoid_inp)
else:
y[:, 0::2] = mx.sin(sinusoid_inp)
y[:, 1::2] = mx.cos(sinusoid_inp)
if self.scale != 1:
y = y * self.scale
return x + y
class MultiHeadAttention(Module):
"""Implements the scaled dot product attention with multiple heads.
@ -107,17 +149,41 @@ class TransformerEncoderLayer(Module):
self.linear2 = Linear(mlp_dims, dims)
def __call__(self, x, mask):
y = self.ln1(x)
y = self.attention(y, y, y, mask)
x = x + y
y = self.ln2(x)
y = self.attention(x, x, x, mask)
y = self.ln1(x + y)
y = self.linear1(y)
y = mx.maximum(y, 0)
y = self.linear2(y)
x = x + y
return x
y = self.ln2(x + y)
return y
class TransformerEncoderLayerWithDropout(Module):
def __init__(self, dims: int, num_heads: int, mlp_dims: Optional[int] = None, dropout_rate: float = 0.1):
super().__init__()
mlp_dims = mlp_dims or dims * 4
self.attention = MultiHeadAttention(dims, num_heads)
self.ln1 = LayerNorm(dims)
self.ln2 = LayerNorm(dims)
self.linear1 = Linear(dims, mlp_dims)
self.linear2 = Linear(mlp_dims, dims)
self.dropout1 = Dropout(dropout_rate)
self.dropout2 = Dropout(dropout_rate)
def __call__(self, x, mask):
y = self.attention(x, x, x, mask)
y = self.dropout1(y)
y = self.ln1(x + y)
y = self.linear1(y)
y = mx.maximum(y, 0)
y = self.linear2(y)
y = self.dropout2(y)
y = self.ln2(x + y)
return y
class TransformerEncoder(Module):
@ -139,6 +205,26 @@ class TransformerEncoder(Module):
return x
class TransformerEncoderWithDropout(Module):
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
):
super().__init__()
self.layers = [
TransformerEncoderLayerWithDropout(dims, num_heads, mlp_dims)
for i in range(num_layers)
]
self.ln = LayerNorm(dims)
def __call__(self, x, mask):
for l in self.layers:
x = l(x, mask)
x = self.ln(x)
return x
class TransformerDecoderLayer(Module):
def __init__(self, dims: int, num_heads: int, mlp_dims: Optional[int] = None):
super().__init__()
@ -152,21 +238,51 @@ class TransformerDecoderLayer(Module):
self.linear2 = Linear(mlp_dims, dims)
def __call__(self, x, memory, x_mask, memory_mask):
y = self.ln1(x)
y = self.self_attention(y, y, y, x_mask)
x = x + y
y = self.self_attention(x, x, x, x_mask)
x = self.ln1(x + y)
y = self.cross_attention(y, memory, memory, memory_mask)
x = self.ln1(x + y)
y = self.ln2(x)
y = self.cross_attention(x, memory, memory, memory_mask)
x = x + y
y = self.ln3(x)
y = self.linear1(y)
y = self.linear1(x)
y = mx.maximum(y, 0)
y = self.linear2(y)
x = x + y
y = self.ln3(x + y)
return x
return y
class TransformerDecoderLayerWithDropout(Module):
def __init__(self, dims: int, num_heads: int, mlp_dims: Optional[int] = None, dropout_rate: float = 0.1):
super().__init__()
mlp_dims = mlp_dims or dims * 4
self.self_attention = MultiHeadAttention(dims, num_heads)
self.cross_attention = MultiHeadAttention(dims, num_heads)
self.ln1 = LayerNorm(dims)
self.ln2 = LayerNorm(dims)
self.ln3 = LayerNorm(dims)
self.linear1 = Linear(dims, mlp_dims)
self.linear2 = Linear(mlp_dims, dims)
self.dropout1 = Dropout(dropout_rate)
self.dropout2 = Dropout(dropout_rate)
self.dropout3 = Dropout(dropout_rate)
def __call__(self, x, memory, x_mask, memory_mask):
y = self.self_attention(x, x, x, x_mask)
y = self.dropout1(y)
x = self.ln1(x + y)
y = self.cross_attention(y, memory, memory, memory_mask)
y = self.dropout2(y)
x = self.ln1(x + y)
y = self.linear1(x)
y = mx.maximum(y, 0)
y = self.linear2(y)
y = self.dropout3(y)
y = self.ln3(x + y)
return y
class TransformerDecoder(Module):
@ -188,6 +304,25 @@ class TransformerDecoder(Module):
return x
class TransformerDecoderWithDropout(Module):
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
):
super().__init__()
self.layers = [
TransformerDecoderLayerWithDropout(dims, num_heads, mlp_dims)
for i in range(num_layers)
]
self.ln = LayerNorm(dims)
def __call__(self, x, memory, x_mask, memory_mask):
for l in self.layers:
x = l(x, memory, x_mask, memory_mask)
x = self.ln(x)
return x
class Transformer(Module):
def __init__(
self,