mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-05 07:34:42 +08:00
Remove "using namespace mlx::core" in benchmarks/examples (#1685)
* Remove "using namespace mlx::core" in benchmarks/examples * Fix building example extension * A missing one in comment * Fix building on M chips
This commit is contained in:
@@ -10,7 +10,7 @@
|
||||
/**
|
||||
* An example of linear regression with MLX.
|
||||
*/
|
||||
using namespace mlx::core;
|
||||
namespace mx = mlx::core;
|
||||
|
||||
int main() {
|
||||
int num_features = 100;
|
||||
@@ -19,35 +19,35 @@ int main() {
|
||||
float learning_rate = 0.01;
|
||||
|
||||
// True parameters
|
||||
auto w_star = random::normal({num_features});
|
||||
auto w_star = mx::random::normal({num_features});
|
||||
|
||||
// The input examples (design matrix)
|
||||
auto X = random::normal({num_examples, num_features});
|
||||
auto X = mx::random::normal({num_examples, num_features});
|
||||
|
||||
// Noisy labels
|
||||
auto eps = 1e-2 * random::normal({num_examples});
|
||||
auto y = matmul(X, w_star) + eps;
|
||||
auto eps = 1e-2 * mx::random::normal({num_examples});
|
||||
auto y = mx::matmul(X, w_star) + eps;
|
||||
|
||||
// Initialize random parameters
|
||||
array w = 1e-2 * random::normal({num_features});
|
||||
mx::array w = 1e-2 * mx::random::normal({num_features});
|
||||
|
||||
auto loss_fn = [&](array w) {
|
||||
auto yhat = matmul(X, w);
|
||||
return (0.5f / num_examples) * sum(square(yhat - y));
|
||||
auto loss_fn = [&](mx::array w) {
|
||||
auto yhat = mx::matmul(X, w);
|
||||
return (0.5f / num_examples) * mx::sum(mx::square(yhat - y));
|
||||
};
|
||||
|
||||
auto grad_fn = grad(loss_fn);
|
||||
auto grad_fn = mx::grad(loss_fn);
|
||||
|
||||
auto tic = timer::time();
|
||||
for (int it = 0; it < num_iters; ++it) {
|
||||
auto grad = grad_fn(w);
|
||||
w = w - learning_rate * grad;
|
||||
eval(w);
|
||||
auto grads = grad_fn(w);
|
||||
w = w - learning_rate * grads;
|
||||
mx::eval(w);
|
||||
}
|
||||
auto toc = timer::time();
|
||||
|
||||
auto loss = loss_fn(w);
|
||||
auto error_norm = std::sqrt(sum(square(w - w_star)).item<float>());
|
||||
auto error_norm = std::sqrt(mx::sum(mx::square(w - w_star)).item<float>());
|
||||
auto throughput = num_iters / timer::seconds(toc - tic);
|
||||
std::cout << "Loss " << loss << ", |w - w*| = " << error_norm
|
||||
<< ", Throughput " << throughput << " (it/s)." << std::endl;
|
||||
|
Reference in New Issue
Block a user