Implement sampling from laplace distribution. (#1279)

This commit is contained in:
fgranqvist
2024-07-24 15:15:37 +02:00
committed by GitHub
parent c34a5ae7f7
commit 50eff6a10a
6 changed files with 210 additions and 40 deletions

View File

@@ -64,43 +64,50 @@ class TestRandom(mlx_tests.MLXTestCase):
self.assertEqual(mx.random.uniform().dtype, mx.random.uniform(dtype=None).dtype)
def test_normal(self):
key = mx.random.key(0)
a = mx.random.normal(key=key)
self.assertEqual(a.shape, ())
self.assertEqual(a.dtype, mx.float32)
def test_normal_and_laplace(self):
# Same tests for normal and laplace.
for distribution_sampler in [mx.random.normal, mx.random.laplace]:
key = mx.random.key(0)
a = distribution_sampler(key=key)
self.assertEqual(a.shape, ())
self.assertEqual(a.dtype, mx.float32)
b = mx.random.normal(key=key)
self.assertEqual(a.item(), b.item())
b = distribution_sampler(key=key)
self.assertEqual(a.item(), b.item())
a = mx.random.normal(shape=(2, 3))
self.assertEqual(a.shape, (2, 3))
a = distribution_sampler(shape=(2, 3))
self.assertEqual(a.shape, (2, 3))
## Generate in float16 or bfloat16
for t in [mx.float16, mx.bfloat16]:
a = mx.random.normal(dtype=t)
self.assertEqual(a.dtype, t)
## Generate in float16 or bfloat16
for t in [mx.float16, mx.bfloat16]:
a = distribution_sampler(dtype=t)
self.assertEqual(a.dtype, t)
# Generate with a given mean and standard deviation
loc = 1.0
scale = 2.0
# Generate with a given mean and standard deviation
loc = 1.0
scale = 2.0
a = mx.random.normal(shape=(3, 2), loc=loc, scale=scale, key=key)
b = scale * mx.random.normal(shape=(3, 2), key=key) + loc
self.assertTrue(mx.allclose(a, b))
a = distribution_sampler(shape=(3, 2), loc=loc, scale=scale, key=key)
b = scale * distribution_sampler(shape=(3, 2), key=key) + loc
self.assertTrue(mx.allclose(a, b))
a = mx.random.normal(
shape=(3, 2), loc=loc, scale=scale, dtype=mx.float16, key=key
)
b = scale * mx.random.normal(shape=(3, 2), dtype=mx.float16, key=key) + loc
self.assertTrue(mx.allclose(a, b))
a = distribution_sampler(
shape=(3, 2), loc=loc, scale=scale, dtype=mx.float16, key=key
)
b = (
scale * distribution_sampler(shape=(3, 2), dtype=mx.float16, key=key)
+ loc
)
self.assertTrue(mx.allclose(a, b))
self.assertEqual(mx.random.normal().dtype, mx.random.normal(dtype=None).dtype)
self.assertEqual(
distribution_sampler().dtype, distribution_sampler(dtype=None).dtype
)
# Test not getting -inf or inf with half precison
for hp in [mx.float16, mx.bfloat16]:
a = abs(mx.random.normal(shape=(10000,), loc=0, scale=1, dtype=hp))
self.assertTrue(mx.all(a < mx.inf))
# Test not getting -inf or inf with half precison
for hp in [mx.float16, mx.bfloat16]:
a = abs(distribution_sampler(shape=(10000,), loc=0, scale=1, dtype=hp))
self.assertTrue(mx.all(a < mx.inf))
def test_multivariate_normal(self):
key = mx.random.key(0)