Implement sampling from laplace distribution. (#1279)

This commit is contained in:
fgranqvist 2024-07-24 15:15:37 +02:00 committed by GitHub
parent c34a5ae7f7
commit 50eff6a10a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 210 additions and 40 deletions

View File

@ -44,3 +44,4 @@ we use a splittable version of Threefry, which is a counter-based PRNG.
split
truncated_normal
uniform
laplace

View File

@ -102,6 +102,19 @@ T above_minus_one() {
return f;
}
// Get the next representable value above -1.0 for half precision
// use std::nextafter as default case.
array above_minus_one_with_default(Dtype dtype) {
switch (dtype) {
case float16:
return array(above_minus_one<float16_t>(), dtype);
case bfloat16:
return array(above_minus_one<bfloat16_t>(), dtype);
default:
return array(std::nextafter(-1.0f, 0.0f), dtype);
}
}
array uniform(
const array& low,
const array& high,
@ -171,17 +184,7 @@ array normal(
const std::optional<array>& key /*= nullopt */,
StreamOrDevice s /* = {} */) {
auto stream = to_stream(s);
auto get_low = [&dtype]() {
switch (dtype) {
case float16:
return array(above_minus_one<float16_t>(), dtype);
case bfloat16:
return array(above_minus_one<bfloat16_t>(), dtype);
default:
return array(std::nextafter(-1.0f, 0.0f), dtype);
}
};
auto low = get_low();
auto low = above_minus_one_with_default(dtype);
auto high = array(1.0f, dtype);
auto samples = uniform(low, high, shape, dtype, key, stream);
samples =
@ -428,4 +431,30 @@ array categorical(
return categorical_impl(logits, axis, shape, key, s);
}
array laplace(
const std::vector<int>& shape,
Dtype dtype,
const float loc /* = 0.0 */,
const float scale /* = 1.0 */,
const std::optional<array>& key /*= nullopt */,
StreamOrDevice s /* = {} */) {
auto stream = to_stream(s);
auto low = above_minus_one_with_default(dtype);
auto high = array(1.0f, dtype);
auto samples = uniform(low, high, shape, dtype, key, stream);
// Use inverse CDF to generate Laplacian noise
samples = multiply(
sign(samples),
log1p(multiply(array(-1.0f, dtype), abs(samples))),
stream);
if (scale != 1.0) {
samples = multiply(array(scale, dtype), samples, stream);
}
if (loc != 0.0) {
samples = add(array(loc, dtype), samples, stream);
}
return samples;
}
} // namespace mlx::core::random

View File

@ -224,4 +224,34 @@ array categorical(
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
/** Generate samples from the laplace distribution. */
array laplace(
const std::vector<int>& shape,
Dtype dtype,
const float loc,
const float scale,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {});
inline array laplace(
const std::vector<int>& shape,
const float loc,
const float scale,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return laplace(shape, float32, loc, scale, key, s);
}
inline array laplace(
const std::vector<int>& shape,
const Dtype dtype,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return laplace(shape, dtype, 0.0, 1.0, key, s);
}
inline array laplace(
const std::vector<int>& shape,
const std::optional<array>& key = std::nullopt,
StreamOrDevice s = {}) {
return laplace(shape, float32, 0.0, 1.0, key, s);
}
} // namespace mlx::core::random

View File

@ -419,6 +419,38 @@ void init_random(nb::module_& parent_module) {
Returns:
array: The ``shape``-sized output array with type ``uint32``.
)pbdoc");
m.def(
"laplace",
[](const std::vector<int>& shape,
std::optional<Dtype> type,
float loc,
float scale,
const std::optional<array>& key_,
StreamOrDevice s) {
auto key = key_ ? key_.value() : default_key().next();
return laplace(shape, type.value_or(float32), loc, scale, key, s);
},
"shape"_a = std::vector<int>{},
"dtype"_a.none() = float32,
"loc"_a = 0.0,
"scale"_a = 1.0,
"key"_a = nb::none(),
"stream"_a = nb::none(),
nb::sig(
"def laplace(shape: Sequence[int] = [], dtype: Optional[Dtype] = float32, loc: float = 0.0, scale: float = 1.0, key: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
Sample numbers from a Laplace distribution.
Args:
shape (list(int), optional): Shape of the output. Default is ``()``.
dtype (Dtype, optional): Type of the output. Default is ``float32``.
loc (float, optional): Mean of the distribution. Default is ``0.0``.
scale (float, optional): The scale "b" of the Laplace distribution. Default is ``1.0``.
key (array, optional): A PRNG key. Default: None.
Returns:
array: The output array of random values.
)pbdoc");
// Register static Python object cleanup before the interpreter exits
auto atexit = nb::module_::import_("atexit");
atexit.attr("register")(nb::cpp_function([]() { default_key().release(); }));

View File

@ -64,42 +64,49 @@ class TestRandom(mlx_tests.MLXTestCase):
self.assertEqual(mx.random.uniform().dtype, mx.random.uniform(dtype=None).dtype)
def test_normal(self):
def test_normal_and_laplace(self):
# Same tests for normal and laplace.
for distribution_sampler in [mx.random.normal, mx.random.laplace]:
key = mx.random.key(0)
a = mx.random.normal(key=key)
a = distribution_sampler(key=key)
self.assertEqual(a.shape, ())
self.assertEqual(a.dtype, mx.float32)
b = mx.random.normal(key=key)
b = distribution_sampler(key=key)
self.assertEqual(a.item(), b.item())
a = mx.random.normal(shape=(2, 3))
a = distribution_sampler(shape=(2, 3))
self.assertEqual(a.shape, (2, 3))
## Generate in float16 or bfloat16
for t in [mx.float16, mx.bfloat16]:
a = mx.random.normal(dtype=t)
a = distribution_sampler(dtype=t)
self.assertEqual(a.dtype, t)
# Generate with a given mean and standard deviation
loc = 1.0
scale = 2.0
a = mx.random.normal(shape=(3, 2), loc=loc, scale=scale, key=key)
b = scale * mx.random.normal(shape=(3, 2), key=key) + loc
a = distribution_sampler(shape=(3, 2), loc=loc, scale=scale, key=key)
b = scale * distribution_sampler(shape=(3, 2), key=key) + loc
self.assertTrue(mx.allclose(a, b))
a = mx.random.normal(
a = distribution_sampler(
shape=(3, 2), loc=loc, scale=scale, dtype=mx.float16, key=key
)
b = scale * mx.random.normal(shape=(3, 2), dtype=mx.float16, key=key) + loc
b = (
scale * distribution_sampler(shape=(3, 2), dtype=mx.float16, key=key)
+ loc
)
self.assertTrue(mx.allclose(a, b))
self.assertEqual(mx.random.normal().dtype, mx.random.normal(dtype=None).dtype)
self.assertEqual(
distribution_sampler().dtype, distribution_sampler(dtype=None).dtype
)
# Test not getting -inf or inf with half precison
for hp in [mx.float16, mx.bfloat16]:
a = abs(mx.random.normal(shape=(10000,), loc=0, scale=1, dtype=hp))
a = abs(distribution_sampler(shape=(10000,), loc=0, scale=1, dtype=hp))
self.assertTrue(mx.all(a < mx.inf))
def test_multivariate_normal(self):

View File

@ -640,3 +640,74 @@ TEST_CASE("test categorical") {
CHECK_EQ(categorical(logits, -2, 7).shape(), std::vector<int>{5, 3, 7});
CHECK_EQ(categorical(logits, -3, 7).shape(), std::vector<int>{4, 3, 7});
}
TEST_CASE("test laplace") {
// Test shapes, types, and sizes
{
auto x = random::laplace({});
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.dtype(), float32);
// Non float type throws
CHECK_THROWS_AS(random::laplace({}, int32), std::invalid_argument);
// Check wrong key type or shape
auto key = array({0, 0});
CHECK_THROWS_AS(random::laplace({}, key), std::invalid_argument);
key = array({0, 0}, {1, 2});
CHECK_THROWS_AS(random::laplace({}, key), std::invalid_argument);
key = array({0u, 0u, 0u}, {3, 1});
CHECK_THROWS_AS(random::laplace({}, key), std::invalid_argument);
key = array({0u, 0u}, {2, 1});
CHECK_THROWS_AS(random::laplace({}, key), std::invalid_argument);
}
{
constexpr float inf = std::numeric_limits<float>::infinity();
auto key = random::key(128291);
auto out = random::laplace({1000000}, key);
float sample_mean = mean(out).item<float>();
float sample_variance = var(out).item<float>();
CHECK(all(less(abs(out), array(inf))).item<bool>());
CHECK(abs(sample_mean) < 0.1);
// Chebyshev's inequality.
for (int k = 1; k <= 5; ++k) {
float prob_above =
mean(greater_equal(out, array(k * std::sqrt(sample_variance))))
.item<float>();
float bound = 1 / std::pow(k, 2);
CHECK(prob_above < bound);
}
// Expected variance for Laplace distribution is 2*scale^2.
float expected_variance = 2.0;
CHECK(std::abs(sample_variance - expected_variance) < 0.01);
// Expected kurtosis of Laplace distribution is 3.
array fourth_pows = power(out - sample_mean, {4});
float sample_kurtosis =
mean(fourth_pows).item<float>() / std::pow(sample_variance, 2) - 3;
float expected_kurtosis = 3.0;
CHECK(std::abs(sample_kurtosis - expected_kurtosis) < 0.1);
}
{
constexpr float inf = std::numeric_limits<float>::infinity();
auto key = random::key(128291);
auto out = random::laplace({10000}, float16, key);
CHECK_EQ(out.dtype(), float16);
CHECK(all(less(abs(out), array(inf))).item<bool>());
CHECK(abs(float(mean(out).item<float16_t>())) < 0.1);
}
{
constexpr float inf = std::numeric_limits<float>::infinity();
auto key = random::key(128291);
auto out = random::laplace({10000}, bfloat16, key);
CHECK_EQ(out.dtype(), bfloat16);
CHECK(all(less(abs(out), array(inf))).item<bool>());
CHECK(abs(float(mean(out).item<bfloat16_t>())) < 0.1);
}
}