mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Fix addmm with empty matrices and beta != 1.0 (#2715)
This commit is contained in:
@@ -2,6 +2,8 @@
|
||||
|
||||
#include <cstring>
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cpu/binary.h"
|
||||
#include "mlx/backend/cpu/binary_ops.h"
|
||||
#include "mlx/backend/cpu/copy.h"
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
#include "mlx/backend/cpu/gemm.h"
|
||||
@@ -135,15 +137,58 @@ void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Handle empty matrix case (K=0)
|
||||
if (inputs[0].shape(-1) == 0) {
|
||||
auto& c = inputs[2];
|
||||
if (beta_ == 1.0f) {
|
||||
CopyType ctype = c.data_size() == 1
|
||||
? CopyType::Scalar
|
||||
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
||||
copy_cpu(c, out, ctype, stream());
|
||||
} else {
|
||||
array beta_scalar = array(beta_, c.dtype());
|
||||
auto bopt = get_binary_op_type(c, beta_scalar);
|
||||
set_binary_op_output_data(c, beta_scalar, out, bopt);
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_input_array(beta_scalar);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([c = array::unsafe_weak_copy(c),
|
||||
beta_scalar = array::unsafe_weak_copy(beta_scalar),
|
||||
out = array::unsafe_weak_copy(out),
|
||||
bopt]() mutable {
|
||||
switch (out.dtype()) {
|
||||
case float16:
|
||||
binary_op<float16_t, detail::Multiply>(c, beta_scalar, out, bopt);
|
||||
break;
|
||||
case float32:
|
||||
binary_op<float, detail::Multiply>(c, beta_scalar, out, bopt);
|
||||
break;
|
||||
case float64:
|
||||
binary_op<double, detail::Multiply>(c, beta_scalar, out, bopt);
|
||||
break;
|
||||
case bfloat16:
|
||||
binary_op<bfloat16_t, detail::Multiply>(c, beta_scalar, out, bopt);
|
||||
break;
|
||||
case complex64:
|
||||
binary_op<complex64_t, detail::Multiply>(c, beta_scalar, out, bopt);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"[AddMM::eval_cpu] Unsupported dtype for beta scaling");
|
||||
}
|
||||
});
|
||||
encoder.add_temporary(std::move(beta_scalar));
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Fill output with C
|
||||
auto& c = inputs[2];
|
||||
CopyType ctype = c.data_size() == 1
|
||||
? CopyType::Scalar
|
||||
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
||||
copy_cpu(c, out, ctype, stream());
|
||||
if (inputs[0].shape(-1) == 0) {
|
||||
return;
|
||||
}
|
||||
matmul_general(inputs[0], inputs[1], out, stream(), alpha_, beta_);
|
||||
}
|
||||
|
||||
|
||||
@@ -8,6 +8,7 @@
|
||||
#include "mlx/backend/common/broadcasting.h"
|
||||
#include "mlx/backend/common/matmul.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/backend/metal/binary.h"
|
||||
#include "mlx/backend/metal/device.h"
|
||||
#include "mlx/backend/metal/kernels.h"
|
||||
#include "mlx/backend/metal/kernels/defines.h"
|
||||
@@ -925,19 +926,27 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Copy c into out and return
|
||||
auto& s = stream();
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
// Handle empty matrix case (K=0)
|
||||
if (inputs[0].shape(-1) == 0) {
|
||||
auto& c = inputs[2];
|
||||
if (beta_ == 1.0f) {
|
||||
copy_gpu(
|
||||
inputs[2],
|
||||
c,
|
||||
out,
|
||||
inputs[2].flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||
stream());
|
||||
c.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||
s);
|
||||
} else {
|
||||
array beta_scalar = array(beta_, c.dtype());
|
||||
binary_op_gpu({c, beta_scalar}, out, "Multiply", s);
|
||||
d.add_temporary(std::move(beta_scalar), s.index);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
auto& s = stream();
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
auto& a_pre = inputs[0];
|
||||
auto& b_pre = inputs[1];
|
||||
|
||||
@@ -785,11 +785,46 @@ class TestBlas(mlx_tests.MLXTestCase):
|
||||
self.assertEqual(out.item(), 1.0)
|
||||
self.assertEqual(out.shape, ())
|
||||
|
||||
a = mx.zeros(shape=(5, 0))
|
||||
b = mx.zeros(shape=(0, 5))
|
||||
c = mx.random.uniform(shape=(5, 5))
|
||||
out = mx.addmm(c, a, b)
|
||||
self.assertTrue(mx.allclose(out, c))
|
||||
a = mx.ones((2, 0))
|
||||
b = mx.ones((0, 2))
|
||||
c = mx.ones((2, 2))
|
||||
|
||||
test_cases = [
|
||||
(0.0, 1.0),
|
||||
(0.0, 2.0),
|
||||
(0.0, 0.5),
|
||||
(0.0, 0.0),
|
||||
(1.0, 2.0),
|
||||
]
|
||||
|
||||
for alpha, beta in test_cases:
|
||||
with self.subTest(alpha=alpha, beta=beta):
|
||||
result = mx.addmm(c, a, b, alpha=alpha, beta=beta)
|
||||
expected = c * beta # a @ b = 0 for empty matrices
|
||||
self.assertTrue(mx.allclose(result, expected))
|
||||
|
||||
shapes_tests = [
|
||||
((3, 0), (0, 3), (3, 3)),
|
||||
((5, 0), (0, 5), (5, 5)),
|
||||
((1, 0), (0, 10), (1, 10)),
|
||||
((10, 0), (0, 1), (10, 1)),
|
||||
]
|
||||
|
||||
for shape_a, shape_b, shape_c in shapes_tests:
|
||||
with self.subTest(shape_a=shape_a, shape_b=shape_b, shape_c=shape_c):
|
||||
a = mx.ones(shape_a)
|
||||
b = mx.ones(shape_b)
|
||||
c = mx.ones(shape_c)
|
||||
result = mx.addmm(c, a, b, alpha=0.5, beta=2.0)
|
||||
expected = c * 2.0
|
||||
self.assertTrue(mx.allclose(result, expected))
|
||||
|
||||
a = mx.ones((2, 5, 0))
|
||||
b = mx.ones((2, 0, 5))
|
||||
c = mx.ones((2, 5, 5))
|
||||
result = mx.addmm(c, a, b, alpha=0.0, beta=3.0)
|
||||
expected = c * 3.0
|
||||
self.assertTrue(mx.allclose(result, expected))
|
||||
|
||||
def test_block_masked_matmul(self):
|
||||
def ref_block_masked_mm(
|
||||
|
||||
Reference in New Issue
Block a user