mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-18 10:26:56 +08:00
Update binary_cross_entropy function to handle both logits and probabilities (#492)
This commit is contained in:
@@ -74,29 +74,50 @@ def cross_entropy(
|
||||
|
||||
|
||||
def binary_cross_entropy(
|
||||
logits: mx.array, targets: mx.array, reduction: Reduction = "none"
|
||||
inputs: mx.array,
|
||||
targets: mx.array,
|
||||
with_logits: bool = True,
|
||||
reduction: Reduction = "mean",
|
||||
) -> mx.array:
|
||||
"""
|
||||
Computes the binary cross entropy loss.
|
||||
|
||||
Args:
|
||||
logits (array): The unnormalized (pre-sigmoid) predicted logits.
|
||||
inputs (array): The predicted values. If ``with_logits`` is ``True``, then
|
||||
``inputs`` are unnormalized logits. Otherwise, ``inputs`` are probabilities.
|
||||
targets (array): The binary target values in {0, 1}.
|
||||
with_logits (bool, optional): Whether ``inputs`` are logits. Default: ``True``.
|
||||
reduction (str, optional): Specifies the reduction to apply to the output:
|
||||
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
|
||||
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'mean'``.
|
||||
|
||||
Returns:
|
||||
array: The computed binary cross entropy loss.
|
||||
Examples:
|
||||
>>> import mlx.core as mx
|
||||
>>> import mlx.nn as nn
|
||||
>>> inputs = mx.array([0.105361, 0.223144, 1.20397, 0.916291])
|
||||
|
||||
>>> logits = mx.array([0.105361, 0.223144, 1.20397, 0.916291])
|
||||
>>> targets = mx.array([0, 0, 1, 1])
|
||||
>>> loss = nn.losses.binary_cross_entropy(inputs, targets, "mean")
|
||||
>>> loss = nn.losses.binary_cross_entropy(logits, targets, reduction="mean")
|
||||
>>> loss
|
||||
array([0.612192], dtype=float32)
|
||||
array(0.539245, dtype=float32)
|
||||
|
||||
>>> probs = mx.array([0.1, 0.1, 0.4, 0.4])
|
||||
>>> targets = mx.array([0, 0, 1, 1])
|
||||
>>> loss = nn.losses.binary_cross_entropy(probs, targets, with_logits=False, reduction="mean")
|
||||
>>> loss
|
||||
array(0.510826, dtype=float32)
|
||||
"""
|
||||
loss = mx.logaddexp(0.0, logits) - targets * logits
|
||||
if inputs.shape != targets.shape:
|
||||
raise ValueError(
|
||||
f"Inputs shape {inputs.shape} does not match targets shape {targets.shape}."
|
||||
)
|
||||
|
||||
if with_logits:
|
||||
loss = mx.logaddexp(0.0, inputs) - inputs * targets
|
||||
else:
|
||||
loss = -(targets * mx.log(inputs) + (1 - targets) * mx.log(1 - inputs))
|
||||
|
||||
return _reduce(loss, reduction)
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user