mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	Update binary_cross_entropy function to handle both logits and probabilities (#492)
This commit is contained in:
		| @@ -105,6 +105,61 @@ class TestLosses(mlx_tests.MLXTestCase): | ||||
|             "Test case failed for cross_entropy --label_smoothing=0.3 --reduction='sum'", | ||||
|         ) | ||||
|  | ||||
|     def test_binary_cross_entropy(self): | ||||
|         def _test_logits_as_inputs(): | ||||
|             logits = mx.array([0.105361, 0.223144, 1.20397, 0.916291]) | ||||
|             targets = mx.array([0, 0, 1, 1]) | ||||
|  | ||||
|             # Test with reduction 'none' | ||||
|             losses_none = nn.losses.binary_cross_entropy( | ||||
|                 logits, targets, reduction="none" | ||||
|             ) | ||||
|             expected_none = mx.array([0.747215, 0.810930, 0.262365, 0.336472]) | ||||
|             self.assertTrue(mx.allclose(losses_none, expected_none)) | ||||
|  | ||||
|             # Test with reduction 'mean' | ||||
|             losses_mean = nn.losses.binary_cross_entropy( | ||||
|                 logits, targets, reduction="mean" | ||||
|             ) | ||||
|             expected_mean = mx.mean(expected_none) | ||||
|             self.assertEqual(losses_mean, expected_mean) | ||||
|  | ||||
|             # Test with reduction 'sum' | ||||
|             losses_sum = nn.losses.binary_cross_entropy( | ||||
|                 logits, targets, reduction="sum" | ||||
|             ) | ||||
|             expected_sum = mx.sum(expected_none) | ||||
|             self.assertEqual(losses_sum, expected_sum) | ||||
|  | ||||
|         def _test_probs_as_inputs(): | ||||
|             probs = mx.array([0.5, 0.6, 0.7, 0.8]) | ||||
|             targets = mx.array([0, 0, 1, 1]) | ||||
|  | ||||
|             # Test with reduction 'none' | ||||
|             losses_none = nn.losses.binary_cross_entropy( | ||||
|                 probs, targets, with_logits=False, reduction="none" | ||||
|             ) | ||||
|             expected_none = mx.array([0.693147, 0.916291, 0.356675, 0.223144]) | ||||
|             print(losses_none, expected_none) | ||||
|             self.assertTrue(mx.allclose(losses_none, expected_none)) | ||||
|  | ||||
|             # Test with reduction 'mean' | ||||
|             losses_mean = nn.losses.binary_cross_entropy( | ||||
|                 probs, targets, with_logits=False, reduction="mean" | ||||
|             ) | ||||
|             expected_mean = mx.mean(expected_none) | ||||
|             self.assertTrue(mx.allclose(losses_mean, expected_mean)) | ||||
|  | ||||
|             # Test with reduction 'sum' | ||||
|             losses_sum = nn.losses.binary_cross_entropy( | ||||
|                 probs, targets, with_logits=False, reduction="sum" | ||||
|             ) | ||||
|             expected_sum = mx.sum(expected_none) | ||||
|             self.assertTrue(mx.allclose(losses_sum, expected_sum)) | ||||
|  | ||||
|         _test_logits_as_inputs() | ||||
|         _test_probs_as_inputs() | ||||
|  | ||||
|     def test_l1_loss(self): | ||||
|         predictions = mx.array([0.5, 0.2, 0.9, 0.0]) | ||||
|         targets = mx.array([0.5, 0.2, 0.9, 0.0]) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 AtomicVar
					AtomicVar