Update binary_cross_entropy function to handle both logits and probabilities (#492)

This commit is contained in:
AtomicVar 2024-01-19 11:22:23 +08:00 committed by GitHub
parent f6e911ced0
commit 550d4bf7c0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 83 additions and 7 deletions

View File

@ -74,29 +74,50 @@ def cross_entropy(
def binary_cross_entropy( def binary_cross_entropy(
logits: mx.array, targets: mx.array, reduction: Reduction = "none" inputs: mx.array,
targets: mx.array,
with_logits: bool = True,
reduction: Reduction = "mean",
) -> mx.array: ) -> mx.array:
""" """
Computes the binary cross entropy loss. Computes the binary cross entropy loss.
Args: Args:
logits (array): The unnormalized (pre-sigmoid) predicted logits. inputs (array): The predicted values. If ``with_logits`` is ``True``, then
``inputs`` are unnormalized logits. Otherwise, ``inputs`` are probabilities.
targets (array): The binary target values in {0, 1}. targets (array): The binary target values in {0, 1}.
with_logits (bool, optional): Whether ``inputs`` are logits. Default: ``True``.
reduction (str, optional): Specifies the reduction to apply to the output: reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``. ``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'mean'``.
Returns: Returns:
array: The computed binary cross entropy loss. array: The computed binary cross entropy loss.
Examples: Examples:
>>> import mlx.core as mx >>> import mlx.core as mx
>>> import mlx.nn as nn >>> import mlx.nn as nn
>>> inputs = mx.array([0.105361, 0.223144, 1.20397, 0.916291])
>>> logits = mx.array([0.105361, 0.223144, 1.20397, 0.916291])
>>> targets = mx.array([0, 0, 1, 1]) >>> targets = mx.array([0, 0, 1, 1])
>>> loss = nn.losses.binary_cross_entropy(inputs, targets, "mean") >>> loss = nn.losses.binary_cross_entropy(logits, targets, reduction="mean")
>>> loss >>> loss
array([0.612192], dtype=float32) array(0.539245, dtype=float32)
>>> probs = mx.array([0.1, 0.1, 0.4, 0.4])
>>> targets = mx.array([0, 0, 1, 1])
>>> loss = nn.losses.binary_cross_entropy(probs, targets, with_logits=False, reduction="mean")
>>> loss
array(0.510826, dtype=float32)
""" """
loss = mx.logaddexp(0.0, logits) - targets * logits if inputs.shape != targets.shape:
raise ValueError(
f"Inputs shape {inputs.shape} does not match targets shape {targets.shape}."
)
if with_logits:
loss = mx.logaddexp(0.0, inputs) - inputs * targets
else:
loss = -(targets * mx.log(inputs) + (1 - targets) * mx.log(1 - inputs))
return _reduce(loss, reduction) return _reduce(loss, reduction)

View File

@ -105,6 +105,61 @@ class TestLosses(mlx_tests.MLXTestCase):
"Test case failed for cross_entropy --label_smoothing=0.3 --reduction='sum'", "Test case failed for cross_entropy --label_smoothing=0.3 --reduction='sum'",
) )
def test_binary_cross_entropy(self):
def _test_logits_as_inputs():
logits = mx.array([0.105361, 0.223144, 1.20397, 0.916291])
targets = mx.array([0, 0, 1, 1])
# Test with reduction 'none'
losses_none = nn.losses.binary_cross_entropy(
logits, targets, reduction="none"
)
expected_none = mx.array([0.747215, 0.810930, 0.262365, 0.336472])
self.assertTrue(mx.allclose(losses_none, expected_none))
# Test with reduction 'mean'
losses_mean = nn.losses.binary_cross_entropy(
logits, targets, reduction="mean"
)
expected_mean = mx.mean(expected_none)
self.assertEqual(losses_mean, expected_mean)
# Test with reduction 'sum'
losses_sum = nn.losses.binary_cross_entropy(
logits, targets, reduction="sum"
)
expected_sum = mx.sum(expected_none)
self.assertEqual(losses_sum, expected_sum)
def _test_probs_as_inputs():
probs = mx.array([0.5, 0.6, 0.7, 0.8])
targets = mx.array([0, 0, 1, 1])
# Test with reduction 'none'
losses_none = nn.losses.binary_cross_entropy(
probs, targets, with_logits=False, reduction="none"
)
expected_none = mx.array([0.693147, 0.916291, 0.356675, 0.223144])
print(losses_none, expected_none)
self.assertTrue(mx.allclose(losses_none, expected_none))
# Test with reduction 'mean'
losses_mean = nn.losses.binary_cross_entropy(
probs, targets, with_logits=False, reduction="mean"
)
expected_mean = mx.mean(expected_none)
self.assertTrue(mx.allclose(losses_mean, expected_mean))
# Test with reduction 'sum'
losses_sum = nn.losses.binary_cross_entropy(
probs, targets, with_logits=False, reduction="sum"
)
expected_sum = mx.sum(expected_none)
self.assertTrue(mx.allclose(losses_sum, expected_sum))
_test_logits_as_inputs()
_test_probs_as_inputs()
def test_l1_loss(self): def test_l1_loss(self):
predictions = mx.array([0.5, 0.2, 0.9, 0.0]) predictions = mx.array([0.5, 0.2, 0.9, 0.0])
targets = mx.array([0.5, 0.2, 0.9, 0.0]) targets = mx.array([0.5, 0.2, 0.9, 0.0])