mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-28 12:13:21 +08:00
start
This commit is contained in:
parent
8e88e30d95
commit
5824626c0b
@ -1,16 +1,18 @@
|
||||
import argparse
|
||||
import math
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
from time_utils import time_fn
|
||||
|
||||
L = 1024
|
||||
L = 30000
|
||||
H = 32
|
||||
H_k = 32 // 4
|
||||
D = 128
|
||||
|
||||
|
||||
def attention(q, k, v):
|
||||
k = mx.quantize(k)
|
||||
v = mx.quantize(v)
|
||||
k = mx.dequantize(*k)
|
||||
v = mx.dequantize(*v)
|
||||
B, Hq, L, D = q.shape
|
||||
_, Hk, S, _ = k.shape
|
||||
q = q.reshape(B, Hk, Hq // Hk, L, D)
|
||||
@ -23,27 +25,54 @@ def attention(q, k, v):
|
||||
|
||||
|
||||
def sdpa(q, k, v):
|
||||
k = mx.quantize(k)
|
||||
v = mx.quantize(v)
|
||||
k = mx.dequantize(*k)
|
||||
v = mx.dequantize(*v)
|
||||
return mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0)
|
||||
|
||||
|
||||
def time_self_attention_primitives():
|
||||
mx.random.seed(3)
|
||||
q = mx.random.uniform(shape=(1, H, 1, D))
|
||||
k = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
v = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
mx.eval(q, k, v)
|
||||
def quant_sdpa(q, k, v):
|
||||
k = mx.quantize(k)
|
||||
v = mx.quantize(v)
|
||||
return mx.fast.quantized_scaled_dot_product_attention(q, *k, *v, scale=1.0)
|
||||
|
||||
|
||||
def time_self_attention_primitives(q, k, v):
|
||||
time_fn(attention, q, k, v)
|
||||
|
||||
|
||||
def time_self_attention_sdpa():
|
||||
mx.random.seed(3)
|
||||
q = mx.random.uniform(shape=(1, H, 1, D))
|
||||
k = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
v = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
mx.eval(q, k, v)
|
||||
def time_self_attention_sdpa(q, k, v):
|
||||
time_fn(sdpa, q, k, v)
|
||||
|
||||
|
||||
def time_self_attention_quant_sdpa(q, k, v):
|
||||
time_fn(quant_sdpa, q, k, v)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_self_attention_sdpa()
|
||||
time_self_attention_primitives()
|
||||
mx.random.seed(3)
|
||||
q = mx.random.uniform(shape=(1, H, 10, D))
|
||||
k = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
v = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
mx.eval(q, k, v)
|
||||
|
||||
k_quant = mx.quantize(k)
|
||||
v_quant = mx.quantize(v)
|
||||
mx.eval(k_quant, v_quant)
|
||||
|
||||
# time_self_attention_sdpa(q, k, v)
|
||||
# time_self_attention_quant_sdpa(q, k_quant, v_quant)
|
||||
# time_self_attention_primitives(q, k, v)
|
||||
q_sdpa = quant_sdpa(q, k, v)
|
||||
print(q_sdpa)
|
||||
o_attention = attention(q, k, v)
|
||||
print(o_attention)
|
||||
np.testing.assert_allclose(q_sdpa, o_attention, atol=1e-5)
|
||||
# o_sdpa = sdpa(q, k, v)
|
||||
# print(o_sdpa)
|
||||
# np.testing.assert_allclose(q_sdpa, o_sdpa, atol=1e-5)
|
||||
# print(o_sdpa[..., :64])
|
||||
# print()
|
||||
# print(o_attention[..., :64])
|
||||
# np.testing.assert_allclose(o_sdpa, o_attention)
|
||||
|
@ -927,19 +927,7 @@ instantiate_fast_inference_self_attention_kernel(half, half, 16, 16, 128, 2, 2);
|
||||
|
||||
// SDPA vector instantiations
|
||||
#define instantiate_sdpa_vector(type, head_dim) \
|
||||
template [[host_name("sdpa_vector_" #type "_" #head_dim)]] \
|
||||
[[kernel]] void sdpa_vector<type, head_dim>( \
|
||||
const device type* queries [[buffer(0)]], \
|
||||
const device type* keys [[buffer(1)]], \
|
||||
const device type* values [[buffer(2)]], \
|
||||
device type* out [[buffer(3)]], \
|
||||
const constant int& gqa_factor, \
|
||||
const constant int& N, \
|
||||
const constant size_t& k_stride, \
|
||||
const constant float& scale, \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]], \
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
instantiate_kernel("sdpa_vector_" #type "_" #head_dim, sdpa_vector, type, head_dim)
|
||||
|
||||
#define instantiate_sdpa_vector_heads(type) \
|
||||
instantiate_sdpa_vector(type, 64) \
|
||||
@ -949,4 +937,18 @@ instantiate_fast_inference_self_attention_kernel(half, half, 16, 16, 128, 2, 2);
|
||||
instantiate_sdpa_vector_heads(float)
|
||||
instantiate_sdpa_vector_heads(bfloat16_t)
|
||||
instantiate_sdpa_vector_heads(float16_t)
|
||||
|
||||
// Quantized SDPA vector instantiations
|
||||
#define instantiate_quant_sdpa_vector(type, head_dim) \
|
||||
instantiate_kernel("quant_sdpa_vector_" #type "_" #head_dim, quant_sdpa_vector, type, head_dim, 64, 4)
|
||||
|
||||
#define instantiate_quant_sdpa_vector_heads(type) \
|
||||
instantiate_quant_sdpa_vector(type, 64) \
|
||||
instantiate_quant_sdpa_vector(type, 96) \
|
||||
instantiate_quant_sdpa_vector(type, 128)
|
||||
|
||||
instantiate_quant_sdpa_vector_heads(float)
|
||||
instantiate_quant_sdpa_vector_heads(bfloat16_t)
|
||||
instantiate_quant_sdpa_vector_heads(float16_t)
|
||||
|
||||
// clang-format on
|
||||
|
@ -16,9 +16,11 @@ template <typename T, int D>
|
||||
const constant float& scale,
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
uint simd_lid [[thread_index_in_simdgroup]]) {
|
||||
uint simd_lid [[thread_index_in_simdgroup]],
|
||||
uint quad_gid [[quadgroup_index_in_threadgroup]],
|
||||
uint quad_lid [[thread_index_in_quadgroup]]) {
|
||||
constexpr int BN = 32;
|
||||
constexpr int BD = 32;
|
||||
constexpr int BD = 4;
|
||||
constexpr int elem_per_thread = D / BD;
|
||||
|
||||
const int stride = BN * D;
|
||||
@ -36,9 +38,9 @@ template <typename T, int D>
|
||||
// Adjust positions
|
||||
const int head_idx = tid.y;
|
||||
const int kv_head_idx = head_idx / gqa_factor;
|
||||
queries += head_idx * D + simd_lid * elem_per_thread;
|
||||
keys += kv_head_idx * k_stride + simd_gid * D + simd_lid * elem_per_thread;
|
||||
values += kv_head_idx * k_stride + simd_gid * D + simd_lid * elem_per_thread;
|
||||
queries += head_idx * D + quad_lid * elem_per_thread;
|
||||
keys += kv_head_idx * k_stride + quad_gid * D + quad_lid * elem_per_thread;
|
||||
values += kv_head_idx * k_stride + quad_gid * D + quad_lid * elem_per_thread;
|
||||
out += head_idx * D + simd_gid * elem_per_thread;
|
||||
|
||||
// Read the query and 0 the output accumulator
|
||||
@ -53,7 +55,7 @@ template <typename T, int D>
|
||||
U sum_exp_score = 0;
|
||||
|
||||
// For each key
|
||||
for (int i = simd_gid; i < N; i += BN) {
|
||||
for (int i = quad_gid; i < N; i += BN) {
|
||||
// Read the key
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
k[i] = keys[i];
|
||||
@ -64,7 +66,7 @@ template <typename T, int D>
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
score += q[i] * k[i];
|
||||
}
|
||||
score = simd_sum(score);
|
||||
score = quad_sum(score);
|
||||
|
||||
// Update the accumulators
|
||||
U new_max = max(max_score, score);
|
||||
@ -88,9 +90,10 @@ template <typename T, int D>
|
||||
// Each thread has a partial part of the output so we need to combine them.
|
||||
|
||||
// First let's communicate the max and sum_exp
|
||||
if (simd_lid == 0) {
|
||||
max_scores[simd_gid] = max_score;
|
||||
sum_exp_scores[simd_gid] = sum_exp_score;
|
||||
// Each quadgroup communicates it's max score
|
||||
if (quad_lid == 0) {
|
||||
max_scores[quad_gid] = max_score;
|
||||
sum_exp_scores[quad_gid] = sum_exp_score;
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
max_score = max_scores[simd_lid];
|
||||
@ -100,9 +103,174 @@ template <typename T, int D>
|
||||
|
||||
// Now we need to aggregate all the outputs
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
outputs[simd_lid * BD + simd_gid] = o[i];
|
||||
// 128 threads with 32 values per thread
|
||||
outputs[simd_gid * BN + simd_lid] = o[i];
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
o[i] = simd_sum(outputs[simd_gid * BD + simd_lid] * factor) / sum_exp_score;
|
||||
o[i] = simd_sum(outputs[simd_lid * BD + simd_gid] * factor) / sum_exp_score;
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
|
||||
// And write the output
|
||||
if (simd_lid == 0) {
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
out[i] = static_cast<T>(o[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int D, int group_size, int bits>
|
||||
[[kernel]] void quant_sdpa_vector(
|
||||
const device T* queries [[buffer(0)]],
|
||||
const device uint32_t* keys [[buffer(1)]],
|
||||
const device T* key_scales [[buffer(2)]],
|
||||
const device T* key_biases [[buffer(3)]],
|
||||
const device uint32_t* values [[buffer(4)]],
|
||||
const device T* value_scales [[buffer(5)]],
|
||||
const device T* value_biases [[buffer(6)]],
|
||||
device T* out [[buffer(7)]],
|
||||
const constant int& gqa_factor,
|
||||
const constant int& N,
|
||||
const constant size_t& k_stride,
|
||||
const constant size_t& group_stride,
|
||||
const constant float& scale,
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
uint simd_lid [[thread_index_in_simdgroup]],
|
||||
uint quad_gid [[quadgroup_index_in_threadgroup]],
|
||||
uint quad_lid [[thread_index_in_quadgroup]]) {
|
||||
constexpr int BN = 32;
|
||||
constexpr int BD = 4;
|
||||
constexpr int elem_per_thread = D / BD;
|
||||
constexpr int pack_factor = 32 / bits;
|
||||
|
||||
const int stride = BN * D;
|
||||
|
||||
typedef float U;
|
||||
|
||||
thread U q[elem_per_thread];
|
||||
thread U k[elem_per_thread];
|
||||
thread U v[elem_per_thread];
|
||||
thread U o[elem_per_thread];
|
||||
|
||||
threadgroup U outputs[BN * BD];
|
||||
threadgroup U max_scores[BN];
|
||||
threadgroup U sum_exp_scores[BN];
|
||||
|
||||
// Adjust positions
|
||||
const int head_idx = tid.y;
|
||||
const int kv_head_idx = head_idx / gqa_factor;
|
||||
queries += head_idx * D + quad_lid * elem_per_thread;
|
||||
|
||||
const int kv_idx = quad_gid * D + quad_lid * elem_per_thread;
|
||||
const int packed_idx = kv_head_idx * k_stride + kv_idx / pack_factor;
|
||||
const int group_idx = kv_head_idx * group_stride + kv_idx / group_size;
|
||||
keys += packed_idx;
|
||||
key_scales += group_idx;
|
||||
key_biases += group_idx;
|
||||
values += packed_idx;
|
||||
value_scales += group_idx;
|
||||
value_biases += group_idx;
|
||||
|
||||
out += head_idx * D + simd_gid * elem_per_thread;
|
||||
|
||||
// Read the query and 0 the output accumulator
|
||||
U query_sum = 0;
|
||||
U shifts[4] = {1, 16, 256, 4096};
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
// Shift by the appropriate amount here
|
||||
query_sum += queries[i];
|
||||
U shift = shifts[i % 4];
|
||||
q[i] = static_cast<U>(scale) * queries[i] / shift;
|
||||
}
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
o[i] = 0;
|
||||
}
|
||||
|
||||
U max_score = -INFINITY;
|
||||
U sum_exp_score = 0;
|
||||
|
||||
// For each key
|
||||
for (int i = quad_gid; i < N; i += BN) {
|
||||
// Read the key
|
||||
auto ks = (const device uint16_t*)keys;
|
||||
for (int i = 0; i < elem_per_thread / 4; i++) {
|
||||
k[4 * i] = ks[i] & 0x000f;
|
||||
k[4 * i + 1] = ks[i] & 0x00f0;
|
||||
k[4 * i + 2] = ks[i] & 0x0f00;
|
||||
k[4 * i + 3] = ks[i] & 0xf000;
|
||||
}
|
||||
// All the keys in a set are in the same group
|
||||
U key_scale = key_scales[0];
|
||||
U key_bias = key_biases[0];
|
||||
|
||||
// Compute the i-th score
|
||||
U score = 0;
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
score += q[i] * k[i];
|
||||
}
|
||||
score = score * key_scale + query_sum * key_bias;
|
||||
score = quad_sum(score);
|
||||
|
||||
// Update the accumulators
|
||||
U new_max = max(max_score, score);
|
||||
U factor = fast::exp(max_score - new_max);
|
||||
U exp_score = fast::exp(score - new_max);
|
||||
|
||||
max_score = new_max;
|
||||
sum_exp_score = sum_exp_score * factor + exp_score;
|
||||
|
||||
U value_scale = value_scales[0];
|
||||
U value_bias = value_biases[0];
|
||||
|
||||
// Load the values
|
||||
auto vs = (const device uint16_t*)values;
|
||||
U s[4] = {
|
||||
value_scale,
|
||||
value_scale / 16.0f,
|
||||
value_scale / 256.0f,
|
||||
value_scale / 4096.0f};
|
||||
for (int i = 0; i < elem_per_thread / 4; i++) {
|
||||
v[4 * i] = s[0] * (vs[i] & 0x000f) + value_bias;
|
||||
v[4 * i + 1] = s[1] * (vs[i] & 0x00f0) + value_bias;
|
||||
v[4 * i + 2] = s[2] * (vs[i] & 0x0f00) + value_bias;
|
||||
v[4 * i + 3] = s[3] * (vs[i] & 0xf000) + value_bias;
|
||||
}
|
||||
|
||||
// Update the output accumulator
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
o[i] = o[i] * factor + exp_score * v[i];
|
||||
}
|
||||
|
||||
// Move the pointers to the next kv
|
||||
keys += stride / pack_factor;
|
||||
key_scales += stride / group_size;
|
||||
key_biases += stride / group_size;
|
||||
values += stride / pack_factor;
|
||||
value_scales += stride / group_size;
|
||||
value_biases += stride / group_size;
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Each thread has a partial part of the output so we need to combine them.
|
||||
|
||||
// First let's communicate the max and sum_exp
|
||||
// Each quadgroup communicates it's max score
|
||||
if (quad_lid == 0) {
|
||||
max_scores[quad_gid] = max_score;
|
||||
sum_exp_scores[quad_gid] = sum_exp_score;
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
max_score = max_scores[simd_lid];
|
||||
U new_max = simd_max(max_score);
|
||||
U factor = fast::exp(max_score - new_max);
|
||||
sum_exp_score = simd_sum(sum_exp_scores[simd_lid] * factor);
|
||||
|
||||
// Now we need to aggregate all the outputs
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
// 128 threads with 32 values per thread
|
||||
outputs[simd_gid * BN + simd_lid] = o[i];
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
o[i] = simd_sum(outputs[simd_lid * BD + simd_gid] * factor) / sum_exp_score;
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
|
||||
|
@ -9,6 +9,8 @@
|
||||
#include "mlx/backend/metal/kernels/scaled_dot_product_attention_params.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
namespace mlx::core::fast {
|
||||
|
||||
namespace {
|
||||
@ -163,7 +165,7 @@ void sdpa_vector(
|
||||
int N = k.shape(2);
|
||||
int B = q.shape(0) * q.shape(1);
|
||||
size_t stride = k.strides()[1];
|
||||
MTL::Size group_dims(1024, 1, 1);
|
||||
MTL::Size group_dims(128, 1, 1);
|
||||
MTL::Size grid_dims(1, B, 1);
|
||||
|
||||
// Get the kernel
|
||||
@ -185,19 +187,67 @@ void sdpa_vector(
|
||||
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
void quant_sdpa_vector(
|
||||
const Stream& s,
|
||||
metal::Device& d,
|
||||
const array& q,
|
||||
const array& k,
|
||||
const array& k_scales,
|
||||
const array& k_biases,
|
||||
const array& v,
|
||||
const array& v_scales,
|
||||
const array& v_biases,
|
||||
array& out,
|
||||
float scale) {
|
||||
// Set the kernel name
|
||||
std::string kname;
|
||||
kname.reserve(96);
|
||||
kname += "quant_sdpa_vector_";
|
||||
kname += get_type_string(q.dtype());
|
||||
kname += "_";
|
||||
kname += std::to_string(q.shape(-1));
|
||||
|
||||
// Compute the necessary sizes
|
||||
int gqa_factor = q.shape(1) / k.shape(1);
|
||||
int N = k.shape(2);
|
||||
int B = q.shape(0) * q.shape(1);
|
||||
size_t stride = k.strides()[1];
|
||||
size_t group_stride = k_scales.strides()[1];
|
||||
MTL::Size group_dims(128, 1, 1);
|
||||
MTL::Size grid_dims(1, B, 1);
|
||||
|
||||
// Get the kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
// Set its arguments
|
||||
compute_encoder.set_input_array(q.data_shared_ptr() == nullptr ? out : q, 0);
|
||||
compute_encoder.set_input_array(k, 1);
|
||||
compute_encoder.set_input_array(k_scales, 2);
|
||||
compute_encoder.set_input_array(k_biases, 3);
|
||||
compute_encoder.set_input_array(v, 4);
|
||||
compute_encoder.set_input_array(v_scales, 5);
|
||||
compute_encoder.set_input_array(v_biases, 6);
|
||||
compute_encoder.set_output_array(out, 7);
|
||||
compute_encoder->setBytes(&gqa_factor, sizeof(int), 8);
|
||||
compute_encoder->setBytes(&N, sizeof(int), 9);
|
||||
compute_encoder->setBytes(&stride, sizeof(size_t), 10);
|
||||
compute_encoder->setBytes(&group_stride, sizeof(size_t), 11);
|
||||
compute_encoder->setBytes(&scale, sizeof(float), 12);
|
||||
|
||||
// Launch
|
||||
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void ScaledDotProductAttention::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out) {
|
||||
assert(inputs.size() == 3);
|
||||
|
||||
auto& s = stream();
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
auto& q_pre = inputs[0];
|
||||
auto& k_pre = inputs[1];
|
||||
auto& v_pre = inputs[2];
|
||||
auto& o = out;
|
||||
|
||||
std::vector<array> copies;
|
||||
@ -236,6 +286,45 @@ void ScaledDotProductAttention::eval_gpu(
|
||||
return strides[3] == 1 && strides[2] == shape[3];
|
||||
};
|
||||
|
||||
if (quantized_) {
|
||||
auto& q_pre = inputs[0];
|
||||
auto& k_pre = inputs[1];
|
||||
auto& k_scales_pre = inputs[2];
|
||||
auto& k_biases_pre = inputs[3];
|
||||
auto& v_pre = inputs[4];
|
||||
auto& v_scales_pre = inputs[5];
|
||||
auto& v_biases_pre = inputs[6];
|
||||
|
||||
// Quantized should only be routed here for single queries
|
||||
assert(q_pre.shape(2) == 1);
|
||||
|
||||
auto q = copy_unless(is_contiguous, q_pre);
|
||||
auto k = copy_unless(is_contiguous_except_seq_len, k_pre);
|
||||
auto k_scales = copy_unless(is_contiguous_except_seq_len, k_scales_pre);
|
||||
auto k_biases = copy_unless(is_contiguous_except_seq_len, k_biases_pre);
|
||||
auto v = copy_unless(is_contiguous_except_seq_len, v_pre);
|
||||
auto v_scales = copy_unless(is_contiguous_except_seq_len, v_scales_pre);
|
||||
auto v_biases = copy_unless(is_contiguous_except_seq_len, v_biases_pre);
|
||||
|
||||
// Donate the query if possible
|
||||
if (q.is_donatable()) {
|
||||
o.move_shared_buffer(q);
|
||||
} else {
|
||||
o.set_data(allocator::malloc_or_wait(o.nbytes()));
|
||||
}
|
||||
|
||||
quant_sdpa_vector(
|
||||
s, d, q, k, k_scales, k_biases, v, v_scales, v_biases, o, scale_);
|
||||
|
||||
}
|
||||
|
||||
// Non-quantized
|
||||
else {
|
||||
assert(inputs.size() == 3);
|
||||
auto& q_pre = inputs[0];
|
||||
auto& k_pre = inputs[1];
|
||||
auto& v_pre = inputs[2];
|
||||
|
||||
// We are in vector mode ie single query
|
||||
if (q_pre.shape(2) == 1) {
|
||||
auto q = copy_unless(is_contiguous, q_pre);
|
||||
@ -251,7 +340,6 @@ void ScaledDotProductAttention::eval_gpu(
|
||||
|
||||
sdpa_vector(s, d, q, k, v, o, scale_);
|
||||
}
|
||||
|
||||
// Full attention mode
|
||||
else {
|
||||
auto q = copy_unless(is_matrix_contiguous, q_pre);
|
||||
@ -261,6 +349,7 @@ void ScaledDotProductAttention::eval_gpu(
|
||||
|
||||
sdpa_full_self_attention_metal(s, d, q, k, v, scale_, o);
|
||||
}
|
||||
}
|
||||
|
||||
d.add_temporaries(std::move(copies), s.index);
|
||||
}
|
||||
|
123
mlx/fast.cpp
123
mlx/fast.cpp
@ -10,6 +10,8 @@
|
||||
#include "mlx/ops.h"
|
||||
#include "mlx/transforms.h"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
namespace mlx::core::fast {
|
||||
|
||||
std::vector<array> Custom::vjp(
|
||||
@ -648,7 +650,7 @@ array scaled_dot_product_attention(
|
||||
std::move(out_shape),
|
||||
final_type,
|
||||
std::make_shared<ScaledDotProductAttention>(
|
||||
stream, fallback, scale, false),
|
||||
stream, fallback, scale, /*needs_mask=*/false, /*quantized=*/false),
|
||||
{q, k, v});
|
||||
}
|
||||
|
||||
@ -662,7 +664,124 @@ array scaled_dot_product_attention(
|
||||
bool ScaledDotProductAttention::is_equivalent(const Primitive& other) const {
|
||||
const ScaledDotProductAttention& a_other =
|
||||
static_cast<const ScaledDotProductAttention&>(other);
|
||||
return needs_mask_ == a_other.needs_mask_ && scale_ == a_other.scale_;
|
||||
return needs_mask_ == a_other.needs_mask_ && scale_ == a_other.scale_ &&
|
||||
quantized_ == a_other.quantized_;
|
||||
}
|
||||
|
||||
array quantized_scaled_dot_product_attention(
|
||||
const array& queries,
|
||||
const array& keys,
|
||||
const array& key_scales,
|
||||
const array& key_biases,
|
||||
const array& values,
|
||||
const array& value_scales,
|
||||
const array& value_biases,
|
||||
const float scale,
|
||||
const std::optional<array>& mask,
|
||||
const int group_size,
|
||||
const int bits,
|
||||
StreamOrDevice s) {
|
||||
int el_per_int = 32 / bits;
|
||||
int out_dim = values.shape(-1) * el_per_int;
|
||||
|
||||
auto n_q_heads = queries.shape(-3);
|
||||
auto n_kv_heads = keys.shape(-3);
|
||||
|
||||
std::cout << "group bits " << group_size << " " << bits << std::endl;
|
||||
auto out_shape = std::vector<int>(
|
||||
{queries.shape(0), queries.shape(1), queries.shape(2), out_dim});
|
||||
auto stream = to_stream(s);
|
||||
bool needs_mask = mask.has_value();
|
||||
auto fallback =
|
||||
[scale, needs_mask, n_q_heads, n_kv_heads, group_size, bits, &s](
|
||||
const std::vector<array>& inputs) -> std::vector<array> {
|
||||
int n_repeats = n_q_heads / n_kv_heads;
|
||||
|
||||
auto q = multiply(array(scale, inputs[0].dtype()), inputs[0], s);
|
||||
|
||||
auto k = inputs[1];
|
||||
auto k_scales = inputs[2];
|
||||
auto k_biases = inputs[3];
|
||||
auto v = inputs[4];
|
||||
auto v_scales = inputs[5];
|
||||
auto v_biases = inputs[6];
|
||||
|
||||
int B = q.shape(0);
|
||||
int L = q.shape(2);
|
||||
|
||||
if (n_repeats > 1) {
|
||||
q = reshape(q, {B, n_kv_heads, n_repeats, L, -1}, s);
|
||||
k = expand_dims(k, 2, s);
|
||||
k_scales = expand_dims(k_scales, 2, s);
|
||||
k_biases = expand_dims(k_biases, 2, s);
|
||||
v = expand_dims(v, 2, s);
|
||||
v_scales = expand_dims(v_scales, 2, s);
|
||||
v_biases = expand_dims(v_biases, 2, s);
|
||||
}
|
||||
|
||||
array scores = quantized_matmul(
|
||||
q,
|
||||
k,
|
||||
k_scales,
|
||||
k_biases,
|
||||
/*transpose=*/true,
|
||||
/*group_size=*/group_size,
|
||||
/*bits=*/bits,
|
||||
s);
|
||||
if (needs_mask) {
|
||||
scores = add(scores, inputs[7], s);
|
||||
}
|
||||
scores = softmax(scores, std::vector<int>{-1}, true, s);
|
||||
array out = quantized_matmul(
|
||||
scores,
|
||||
v,
|
||||
v_scales,
|
||||
v_biases,
|
||||
/*transpose=*/false,
|
||||
/*group_size=*/group_size,
|
||||
/*bits=*/bits,
|
||||
s);
|
||||
if (n_repeats > 1) {
|
||||
out = reshape(out, {B, n_q_heads, L, -1}, s);
|
||||
}
|
||||
return std::vector<array>{out};
|
||||
};
|
||||
|
||||
if (true) {
|
||||
if (needs_mask) {
|
||||
return fallback(
|
||||
{queries,
|
||||
keys,
|
||||
key_scales,
|
||||
key_biases,
|
||||
values,
|
||||
value_scales,
|
||||
value_biases,
|
||||
mask.value()})[0];
|
||||
} else {
|
||||
return fallback(
|
||||
{queries,
|
||||
keys,
|
||||
key_scales,
|
||||
key_biases,
|
||||
values,
|
||||
value_scales,
|
||||
value_biases})[0];
|
||||
}
|
||||
} else {
|
||||
return array(
|
||||
std::move(out_shape),
|
||||
queries.dtype(),
|
||||
std::make_shared<ScaledDotProductAttention>(
|
||||
stream, fallback, scale, /*needs_mask=*/false, /*quantized=*/true),
|
||||
{queries,
|
||||
keys,
|
||||
key_scales,
|
||||
key_biases,
|
||||
values,
|
||||
value_scales,
|
||||
value_biases});
|
||||
}
|
||||
}
|
||||
|
||||
array pack_and_quantize(
|
||||
|
15
mlx/fast.h
15
mlx/fast.h
@ -41,6 +41,21 @@ array scaled_dot_product_attention(
|
||||
const std::optional<int> memory_efficient_threshold = std::nullopt,
|
||||
StreamOrDevice s = {});
|
||||
|
||||
/** Computes: `O = softmax(Q @ K.T) @ V` where K and V are quantized. **/
|
||||
array quantized_scaled_dot_product_attention(
|
||||
const array& queries,
|
||||
const array& keys,
|
||||
const array& key_scales,
|
||||
const array& key_biases,
|
||||
const array& values,
|
||||
const array& value_scales,
|
||||
const array& value_biases,
|
||||
const float scale,
|
||||
const std::optional<array>& mask = std::nullopt,
|
||||
const int group_size = 64,
|
||||
const int bits = 4,
|
||||
StreamOrDevice s = {});
|
||||
|
||||
std::tuple<array, array, array> affine_quantize(
|
||||
const array& w,
|
||||
int group_size = 64,
|
||||
|
@ -190,8 +190,12 @@ class ScaledDotProductAttention : public Custom {
|
||||
Stream stream,
|
||||
std::function<std::vector<array>(std::vector<array>)> fallback,
|
||||
const float scale,
|
||||
const bool needs_mask)
|
||||
: Custom(stream, fallback), scale_(scale), needs_mask_(needs_mask) {}
|
||||
const bool needs_mask,
|
||||
const bool quantized)
|
||||
: Custom(stream, fallback),
|
||||
scale_(scale),
|
||||
needs_mask_(needs_mask),
|
||||
quantized_(quantized) {}
|
||||
|
||||
void eval_cpu(const std::vector<array>& inputs, std::vector<array>& outputs)
|
||||
override {
|
||||
@ -212,6 +216,7 @@ class ScaledDotProductAttention : public Custom {
|
||||
std::function<std::vector<array>(std::vector<array>)> fallback_;
|
||||
float scale_;
|
||||
bool needs_mask_;
|
||||
bool quantized_;
|
||||
};
|
||||
|
||||
class AffineQuantize : public Custom {
|
||||
|
@ -150,6 +150,49 @@ void init_fast(nb::module_& parent_module) {
|
||||
array: The output array.
|
||||
)pbdoc");
|
||||
|
||||
m.def(
|
||||
"quantized_scaled_dot_product_attention",
|
||||
&fast::quantized_scaled_dot_product_attention,
|
||||
"q"_a,
|
||||
"k"_a,
|
||||
"k_scales"_a,
|
||||
"k_biases"_a,
|
||||
"v"_a,
|
||||
"v_scales"_a,
|
||||
"v_biases"_a,
|
||||
nb::kw_only(),
|
||||
"scale"_a,
|
||||
"mask"_a = nb::none(),
|
||||
"group_size"_a = 64,
|
||||
"bits"_a = 4,
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def quantized_scaled_dot_product_attention(q: array, k: array, k_scales: array, k_biases: array, v: array, v_scales: array, v_biases: array, *, scale: float, mask: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
A fast implementation of multi-head attention: ``O = softmax(Q @ K.T, dim=-1) @ V``.
|
||||
|
||||
Supports:
|
||||
|
||||
* `Multi-Head Attention <https://arxiv.org/abs/1706.03762>`_
|
||||
* `Grouped Query Attention <https://arxiv.org/abs/2305.13245>`_
|
||||
* `Multi-Query Attention <https://arxiv.org/abs/1911.02150>`_
|
||||
|
||||
Note: The softmax operation is performed in ``float32`` regardless of
|
||||
the input precision.
|
||||
|
||||
Note: For Grouped Query Attention and Multi-Query Attention, the ``k``
|
||||
and ``v`` inputs should not be pre-tiled to match ``q``.
|
||||
|
||||
Args:
|
||||
q (array): Input query array.
|
||||
k (array): Input keys array.
|
||||
v (array): Input values array.
|
||||
scale (float): Scale for queries (typically ``1.0 / sqrt(q.shape(-1)``)
|
||||
mask (array, optional): An additive mask to apply to the query-key scores.
|
||||
Returns:
|
||||
array: The output array.
|
||||
)pbdoc");
|
||||
|
||||
m.def(
|
||||
"affine_quantize",
|
||||
nb::overload_cast<
|
||||
|
Loading…
Reference in New Issue
Block a user