add bfloat conv for windograd (#1306)

* add bfloat conv for windograd

* accumulate in fp32

* accumulate in fp32

* accumulate in bf16
This commit is contained in:
Awni Hannun
2024-08-05 15:51:13 -07:00
committed by GitHub
parent 10b5835501
commit 58d0e199e1
2 changed files with 40 additions and 29 deletions

View File

@@ -275,7 +275,6 @@ class TestConv(mlx_tests.MLXTestCase):
dilation=(1, 1),
groups=1,
dtype="float32",
atol=1e-5,
):
with self.subTest(
dtype=dtype,
@@ -289,19 +288,22 @@ class TestConv(mlx_tests.MLXTestCase):
dilation=dilation,
groups=groups,
):
np_dtype = getattr(np, dtype)
np.random.seed(0)
iH, iW = idim
kH, kW = kdim
scale = 1.0 / math.sqrt(kH * kW * C)
in_np = np.random.normal(0.0, scale, (N, iH, iW, C)).astype(np_dtype)
wt_np = np.random.normal(0.0, 1.0, (O, kH, kW, int(C / groups))).astype(
np_dtype
)
in_np = np.random.normal(0.0, scale, (N, iH, iW, C))
wt_np = np.random.normal(0.0, 1.0, (O, kH, kW, int(C / groups)))
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
mx_dtype = getattr(mx, dtype)
torch_dtype = getattr(torch, dtype)
in_mx, wt_mx = map(
lambda x: mx.array(x).astype(mx_dtype), (in_np, wt_np)
)
in_pt, wt_pt = map(
lambda x: torch.from_numpy(x.transpose(0, 3, 1, 2)).to("cpu"),
lambda x: torch.from_numpy(x.transpose(0, 3, 1, 2))
.to("cpu")
.to(torch_dtype),
(in_np, wt_np),
)
@@ -312,7 +314,7 @@ class TestConv(mlx_tests.MLXTestCase):
padding=padding,
dilation=dilation,
groups=groups,
)
).astype(mx.float32)
out_pt = torch.conv2d(
in_pt,
wt_pt,
@@ -321,12 +323,20 @@ class TestConv(mlx_tests.MLXTestCase):
dilation=dilation,
groups=groups,
)
out_pt = torch.permute(out_pt, (0, 2, 3, 1)).numpy(force=True)
out_pt = (
torch.permute(out_pt, (0, 2, 3, 1))
.to(torch.float32)
.numpy(force=True)
)
self.assertEqual(out_pt.shape, out_mx.shape)
if dtype == "bfloat16":
atol, rtol = 1e-1, 1e-3
else:
atol, rtol = 1e-5, 1e-6
self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
for dtype in ("float32",):
for dtype in ("float32", "bfloat16"):
for N, C, O in (
(1, 1, 1),
(1, 6, 1),