mirror of
https://github.com/ml-explore/mlx.git
synced 2025-08-03 01:06:43 +08:00
add groups in conv2d (#1569)
This commit is contained in:
parent
9a3842a2d9
commit
59247c2b62
19
mlx/ops.cpp
19
mlx/ops.cpp
@ -1402,10 +1402,16 @@ array isnan(const array& a, StreamOrDevice s /* = {} */) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
array isinf(const array& a, StreamOrDevice s /* = {} */) {
|
array isinf(const array& a, StreamOrDevice s /* = {} */) {
|
||||||
|
if (issubdtype(a.dtype(), integer) || a.dtype() == bool_) {
|
||||||
|
return full(a.shape(), false, bool_, s);
|
||||||
|
}
|
||||||
return logical_or(isposinf(a, s), isneginf(a, s), s);
|
return logical_or(isposinf(a, s), isneginf(a, s), s);
|
||||||
}
|
}
|
||||||
|
|
||||||
array isfinite(const array& a, StreamOrDevice s /* = {} */) {
|
array isfinite(const array& a, StreamOrDevice s /* = {} */) {
|
||||||
|
if (issubdtype(a.dtype(), integer) || a.dtype() == bool_) {
|
||||||
|
return full(a.shape(), true, bool_, s);
|
||||||
|
}
|
||||||
return logical_not(logical_or(isinf(a, s), isnan(a, s), s), s);
|
return logical_not(logical_or(isinf(a, s), isnan(a, s), s), s);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1497,10 +1503,17 @@ array isclose(
|
|||||||
auto out = less_equal(lhs, rhs, s);
|
auto out = less_equal(lhs, rhs, s);
|
||||||
|
|
||||||
// Correct the result for infinite values.
|
// Correct the result for infinite values.
|
||||||
auto any_inf = logical_or(isinf(a, s), isinf(b, s), s);
|
auto a_pos_inf = isposinf(a, s);
|
||||||
|
auto b_pos_inf = isposinf(b, s);
|
||||||
|
auto a_neg_inf = isneginf(a, s);
|
||||||
|
auto b_neg_inf = isneginf(b, s);
|
||||||
|
auto any_inf = logical_or(
|
||||||
|
logical_or(a_pos_inf, a_neg_inf, s),
|
||||||
|
logical_or(b_pos_inf, b_neg_inf, s),
|
||||||
|
s);
|
||||||
auto both_inf = logical_or(
|
auto both_inf = logical_or(
|
||||||
logical_and(isposinf(a, s), isposinf(b, s), s),
|
logical_and(a_pos_inf, b_pos_inf, s),
|
||||||
logical_and(isneginf(a, s), isneginf(b, s), s),
|
logical_and(a_neg_inf, b_neg_inf, s),
|
||||||
s);
|
s);
|
||||||
|
|
||||||
// Convert all elements where either value is infinite to False.
|
// Convert all elements where either value is infinite to False.
|
||||||
|
@ -101,6 +101,8 @@ class Conv2d(Module):
|
|||||||
padding (int or tuple, optional): How many positions to 0-pad
|
padding (int or tuple, optional): How many positions to 0-pad
|
||||||
the input with. Default: ``0``.
|
the input with. Default: ``0``.
|
||||||
dilation (int or tuple, optional): The dilation of the convolution.
|
dilation (int or tuple, optional): The dilation of the convolution.
|
||||||
|
groups (int, optional): The number of groups for the convolution.
|
||||||
|
Default: ``1``.
|
||||||
bias (bool, optional): If ``True`` add a learnable bias to the
|
bias (bool, optional): If ``True`` add a learnable bias to the
|
||||||
output. Default: ``True``
|
output. Default: ``True``
|
||||||
"""
|
"""
|
||||||
@ -113,10 +115,17 @@ class Conv2d(Module):
|
|||||||
stride: Union[int, tuple] = 1,
|
stride: Union[int, tuple] = 1,
|
||||||
padding: Union[int, tuple] = 0,
|
padding: Union[int, tuple] = 0,
|
||||||
dilation: Union[int, tuple] = 1,
|
dilation: Union[int, tuple] = 1,
|
||||||
|
groups: int = 1,
|
||||||
bias: bool = True,
|
bias: bool = True,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
|
if in_channels % groups != 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"The number of input channels ({in_channels}) must be "
|
||||||
|
f"divisible by the number of groups ({groups})"
|
||||||
|
)
|
||||||
|
|
||||||
kernel_size, stride, padding = map(
|
kernel_size, stride, padding = map(
|
||||||
lambda x: (x, x) if isinstance(x, int) else x,
|
lambda x: (x, x) if isinstance(x, int) else x,
|
||||||
(kernel_size, stride, padding),
|
(kernel_size, stride, padding),
|
||||||
@ -125,7 +134,7 @@ class Conv2d(Module):
|
|||||||
self.weight = mx.random.uniform(
|
self.weight = mx.random.uniform(
|
||||||
low=-scale,
|
low=-scale,
|
||||||
high=scale,
|
high=scale,
|
||||||
shape=(out_channels, *kernel_size, in_channels),
|
shape=(out_channels, *kernel_size, in_channels // groups),
|
||||||
)
|
)
|
||||||
if bias:
|
if bias:
|
||||||
self.bias = mx.zeros((out_channels,))
|
self.bias = mx.zeros((out_channels,))
|
||||||
@ -133,17 +142,21 @@ class Conv2d(Module):
|
|||||||
self.padding = padding
|
self.padding = padding
|
||||||
self.stride = stride
|
self.stride = stride
|
||||||
self.dilation = dilation
|
self.dilation = dilation
|
||||||
|
self.groups = groups
|
||||||
|
|
||||||
def _extra_repr(self):
|
def _extra_repr(self):
|
||||||
return (
|
return (
|
||||||
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
||||||
f"kernel_size={self.weight.shape[1:2]}, stride={self.stride}, "
|
f"kernel_size={self.weight.shape[1:2]}, stride={self.stride}, "
|
||||||
f"padding={self.padding}, dilation={self.dilation}, "
|
f"padding={self.padding}, dilation={self.dilation}, "
|
||||||
|
f"groups={self.groups}, "
|
||||||
f"bias={'bias' in self}"
|
f"bias={'bias' in self}"
|
||||||
)
|
)
|
||||||
|
|
||||||
def __call__(self, x):
|
def __call__(self, x):
|
||||||
y = mx.conv2d(x, self.weight, self.stride, self.padding, self.dilation)
|
y = mx.conv2d(
|
||||||
|
x, self.weight, self.stride, self.padding, self.dilation, self.groups
|
||||||
|
)
|
||||||
if "bias" in self:
|
if "bias" in self:
|
||||||
y = y + self.bias
|
y = y + self.bias
|
||||||
return y
|
return y
|
||||||
|
@ -706,6 +706,12 @@ class TestLayers(mlx_tests.MLXTestCase):
|
|||||||
self.assertEqual(y.shape, (4, 4, 4, 8))
|
self.assertEqual(y.shape, (4, 4, 4, 8))
|
||||||
self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4)
|
self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4)
|
||||||
|
|
||||||
|
# 3x3 conv groups > 1
|
||||||
|
x = mx.ones((4, 7, 7, 4))
|
||||||
|
c = nn.Conv2d(4, 8, 3, padding=1, stride=1, groups=2)
|
||||||
|
y = c(x)
|
||||||
|
self.assertEqual(y.shape, (4, 7, 7, 8))
|
||||||
|
|
||||||
def test_sequential(self):
|
def test_sequential(self):
|
||||||
x = mx.ones((10, 2))
|
x = mx.ones((10, 2))
|
||||||
m = nn.Sequential(nn.Linear(2, 10), nn.ReLU(), nn.Linear(10, 1))
|
m = nn.Sequential(nn.Linear(2, 10), nn.ReLU(), nn.Linear(10, 1))
|
||||||
|
Loading…
Reference in New Issue
Block a user