Gather qmm batched kernel and refactoring of quantized (#2078)

This commit is contained in:
Angelos Katharopoulos
2025-04-17 13:53:11 -07:00
committed by GitHub
parent 99eefd2ec0
commit 5de6d94a90
15 changed files with 1479 additions and 449 deletions

View File

@@ -752,4 +752,43 @@ MTL::ComputePipelineState* get_quantized_kernel(
return d.get_kernel(kernel_name, lib);
}
MTL::ComputePipelineState* get_gather_qmm_kernel(
metal::Device& d,
const std::string& kernel_name,
const std::string& hash_name,
const metal::MTLFCList& func_consts,
const array& x,
int group_size,
int bits,
int bm,
int bn,
int bk,
int wm,
int wn,
bool transpose) {
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
std::string kernel_source;
concatenate(
kernel_source,
metal::utils(),
metal::gemm(),
metal::quantized(),
get_template_definition(
lib_name,
"gather_qmm_rhs",
get_type_string(x.dtype()),
group_size,
bits,
bm,
bn,
bk,
wm,
wn,
transpose));
return kernel_source;
});
return d.get_kernel(kernel_name, lib, hash_name, func_consts);
}
} // namespace mlx::core

View File

@@ -224,6 +224,21 @@ MTL::ComputePipelineState* get_quantized_kernel(
const std::string& kernel_name,
const std::string& template_def);
MTL::ComputePipelineState* get_gather_qmm_kernel(
metal::Device& d,
const std::string& kernel_name,
const std::string& hash_name,
const metal::MTLFCList& func_consts,
const array& x,
int group_size,
int bits,
int bm,
int bn,
int bk,
int wm,
int wn,
bool transpose);
// Create a GPU kernel template definition for JIT compilation
template <typename... Args>
std::string

View File

@@ -3,6 +3,10 @@
#include <metal_simdgroup>
#include <metal_stdlib>
constant bool align_M [[function_constant(200)]];
constant bool align_N [[function_constant(201)]];
constant bool align_K [[function_constant(202)]];
using namespace metal;
#define MLX_MTL_CONST static constant constexpr const
@@ -1686,26 +1690,26 @@ template <
}
template <typename T, int group_size, int bits>
[[kernel]] void bs_qmv_fast(
[[kernel]] void gather_qmv_fast(
const device uint32_t* w [[buffer(0)]],
const device T* scales [[buffer(1)]],
const device T* biases [[buffer(2)]],
const device T* x [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& in_vec_size [[buffer(5)]],
const constant int& out_vec_size [[buffer(6)]],
const constant int& x_batch_ndims [[buffer(7)]],
const constant int* x_shape [[buffer(8)]],
const constant int64_t* x_strides [[buffer(9)]],
const constant int& w_batch_ndims [[buffer(10)]],
const constant int* w_shape [[buffer(11)]],
const constant int64_t* w_strides [[buffer(12)]],
const constant int64_t* s_strides [[buffer(13)]],
const constant int64_t* b_strides [[buffer(14)]],
const constant int& batch_ndims [[buffer(15)]],
const constant int* batch_shape [[buffer(16)]],
const device uint32_t* lhs_indices [[buffer(17)]],
const device uint32_t* rhs_indices [[buffer(18)]],
const device uint32_t* lhs_indices [[buffer(4)]],
const device uint32_t* rhs_indices [[buffer(5)]],
device T* y [[buffer(6)]],
const constant int& in_vec_size [[buffer(7)]],
const constant int& out_vec_size [[buffer(8)]],
const constant int& x_batch_ndims [[buffer(9)]],
const constant int* x_shape [[buffer(10)]],
const constant int64_t* x_strides [[buffer(11)]],
const constant int& w_batch_ndims [[buffer(12)]],
const constant int* w_shape [[buffer(13)]],
const constant int64_t* w_strides [[buffer(14)]],
const constant int64_t* s_strides [[buffer(15)]],
const constant int64_t* b_strides [[buffer(16)]],
const constant int& batch_ndims [[buffer(17)]],
const constant int* batch_shape [[buffer(18)]],
const constant int64_t* lhs_strides [[buffer(19)]],
const constant int64_t* rhs_strides [[buffer(20)]],
uint3 tid [[threadgroup_position_in_grid]],
@@ -1748,26 +1752,26 @@ template <typename T, int group_size, int bits>
}
template <typename T, int group_size, int bits>
[[kernel]] void bs_qmv(
[[kernel]] void gather_qmv(
const device uint32_t* w [[buffer(0)]],
const device T* scales [[buffer(1)]],
const device T* biases [[buffer(2)]],
const device T* x [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& in_vec_size [[buffer(5)]],
const constant int& out_vec_size [[buffer(6)]],
const constant int& x_batch_ndims [[buffer(7)]],
const constant int* x_shape [[buffer(8)]],
const constant int64_t* x_strides [[buffer(9)]],
const constant int& w_batch_ndims [[buffer(10)]],
const constant int* w_shape [[buffer(11)]],
const constant int64_t* w_strides [[buffer(12)]],
const constant int64_t* s_strides [[buffer(13)]],
const constant int64_t* b_strides [[buffer(14)]],
const constant int& batch_ndims [[buffer(15)]],
const constant int* batch_shape [[buffer(16)]],
const device uint32_t* lhs_indices [[buffer(17)]],
const device uint32_t* rhs_indices [[buffer(18)]],
const device uint32_t* lhs_indices [[buffer(4)]],
const device uint32_t* rhs_indices [[buffer(5)]],
device T* y [[buffer(6)]],
const constant int& in_vec_size [[buffer(7)]],
const constant int& out_vec_size [[buffer(8)]],
const constant int& x_batch_ndims [[buffer(9)]],
const constant int* x_shape [[buffer(10)]],
const constant int64_t* x_strides [[buffer(11)]],
const constant int& w_batch_ndims [[buffer(12)]],
const constant int* w_shape [[buffer(13)]],
const constant int64_t* w_strides [[buffer(14)]],
const constant int64_t* s_strides [[buffer(15)]],
const constant int64_t* b_strides [[buffer(16)]],
const constant int& batch_ndims [[buffer(17)]],
const constant int* batch_shape [[buffer(18)]],
const constant int64_t* lhs_strides [[buffer(19)]],
const constant int64_t* rhs_strides [[buffer(20)]],
uint3 tid [[threadgroup_position_in_grid]],
@@ -1810,26 +1814,26 @@ template <typename T, int group_size, int bits>
}
template <typename T, int group_size, int bits>
[[kernel]] void bs_qvm(
[[kernel]] void gather_qvm(
const device uint32_t* w [[buffer(0)]],
const device T* scales [[buffer(1)]],
const device T* biases [[buffer(2)]],
const device T* x [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& in_vec_size [[buffer(5)]],
const constant int& out_vec_size [[buffer(6)]],
const constant int& x_batch_ndims [[buffer(7)]],
const constant int* x_shape [[buffer(8)]],
const constant int64_t* x_strides [[buffer(9)]],
const constant int& w_batch_ndims [[buffer(10)]],
const constant int* w_shape [[buffer(11)]],
const constant int64_t* w_strides [[buffer(12)]],
const constant int64_t* s_strides [[buffer(13)]],
const constant int64_t* b_strides [[buffer(14)]],
const constant int& batch_ndims [[buffer(15)]],
const constant int* batch_shape [[buffer(16)]],
const device uint32_t* lhs_indices [[buffer(17)]],
const device uint32_t* rhs_indices [[buffer(18)]],
const device uint32_t* lhs_indices [[buffer(4)]],
const device uint32_t* rhs_indices [[buffer(5)]],
device T* y [[buffer(6)]],
const constant int& in_vec_size [[buffer(7)]],
const constant int& out_vec_size [[buffer(8)]],
const constant int& x_batch_ndims [[buffer(9)]],
const constant int* x_shape [[buffer(10)]],
const constant int64_t* x_strides [[buffer(11)]],
const constant int& w_batch_ndims [[buffer(12)]],
const constant int* w_shape [[buffer(13)]],
const constant int64_t* w_strides [[buffer(14)]],
const constant int64_t* s_strides [[buffer(15)]],
const constant int64_t* b_strides [[buffer(16)]],
const constant int& batch_ndims [[buffer(17)]],
const constant int* batch_shape [[buffer(18)]],
const constant int64_t* lhs_strides [[buffer(19)]],
const constant int64_t* rhs_strides [[buffer(20)]],
uint3 tid [[threadgroup_position_in_grid]],
@@ -1879,27 +1883,27 @@ template <
const int BM = 32,
const int BK = 32,
const int BN = 32>
[[kernel]] void bs_qmm_t(
[[kernel]] void gather_qmm_t(
const device uint32_t* w [[buffer(0)]],
const device T* scales [[buffer(1)]],
const device T* biases [[buffer(2)]],
const device T* x [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& K [[buffer(5)]],
const constant int& N [[buffer(6)]],
const constant int& M [[buffer(7)]],
const constant int& x_batch_ndims [[buffer(8)]],
const constant int* x_shape [[buffer(9)]],
const constant int64_t* x_strides [[buffer(10)]],
const constant int& w_batch_ndims [[buffer(11)]],
const constant int* w_shape [[buffer(12)]],
const constant int64_t* w_strides [[buffer(13)]],
const constant int64_t* s_strides [[buffer(14)]],
const constant int64_t* b_strides [[buffer(15)]],
const constant int& batch_ndims [[buffer(16)]],
const constant int* batch_shape [[buffer(17)]],
const device uint32_t* lhs_indices [[buffer(18)]],
const device uint32_t* rhs_indices [[buffer(19)]],
const device uint32_t* lhs_indices [[buffer(4)]],
const device uint32_t* rhs_indices [[buffer(5)]],
device T* y [[buffer(6)]],
const constant int& K [[buffer(7)]],
const constant int& N [[buffer(8)]],
const constant int& M [[buffer(9)]],
const constant int& x_batch_ndims [[buffer(10)]],
const constant int* x_shape [[buffer(11)]],
const constant int64_t* x_strides [[buffer(12)]],
const constant int& w_batch_ndims [[buffer(13)]],
const constant int* w_shape [[buffer(14)]],
const constant int64_t* w_strides [[buffer(15)]],
const constant int64_t* s_strides [[buffer(16)]],
const constant int64_t* b_strides [[buffer(17)]],
const constant int& batch_ndims [[buffer(18)]],
const constant int* batch_shape [[buffer(19)]],
const constant int64_t* lhs_strides [[buffer(20)]],
const constant int64_t* rhs_strides [[buffer(21)]],
uint3 tid [[threadgroup_position_in_grid]],
@@ -1946,27 +1950,27 @@ template <
const int BM = 32,
const int BK = 32,
const int BN = 32>
[[kernel]] void bs_qmm_n(
[[kernel]] void gather_qmm_n(
const device uint32_t* w [[buffer(0)]],
const device T* scales [[buffer(1)]],
const device T* biases [[buffer(2)]],
const device T* x [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& K [[buffer(5)]],
const constant int& N [[buffer(6)]],
const constant int& M [[buffer(7)]],
const constant int& x_batch_ndims [[buffer(8)]],
const constant int* x_shape [[buffer(9)]],
const constant int64_t* x_strides [[buffer(10)]],
const constant int& w_batch_ndims [[buffer(11)]],
const constant int* w_shape [[buffer(12)]],
const constant int64_t* w_strides [[buffer(13)]],
const constant int64_t* s_strides [[buffer(14)]],
const constant int64_t* b_strides [[buffer(15)]],
const constant int& batch_ndims [[buffer(16)]],
const constant int* batch_shape [[buffer(17)]],
const device uint32_t* lhs_indices [[buffer(18)]],
const device uint32_t* rhs_indices [[buffer(19)]],
const device uint32_t* lhs_indices [[buffer(4)]],
const device uint32_t* rhs_indices [[buffer(5)]],
device T* y [[buffer(6)]],
const constant int& K [[buffer(7)]],
const constant int& N [[buffer(8)]],
const constant int& M [[buffer(9)]],
const constant int& x_batch_ndims [[buffer(10)]],
const constant int* x_shape [[buffer(11)]],
const constant int64_t* x_strides [[buffer(12)]],
const constant int& w_batch_ndims [[buffer(13)]],
const constant int* w_shape [[buffer(14)]],
const constant int64_t* w_strides [[buffer(15)]],
const constant int64_t* s_strides [[buffer(16)]],
const constant int64_t* b_strides [[buffer(17)]],
const constant int& batch_ndims [[buffer(18)]],
const constant int* batch_shape [[buffer(19)]],
const constant int64_t* lhs_strides [[buffer(20)]],
const constant int64_t* rhs_strides [[buffer(21)]],
uint3 tid [[threadgroup_position_in_grid]],
@@ -2007,6 +2011,289 @@ template <
w, scales, biases, x, y, Xs, Ws, K, N, M, tid, lid, simd_gid, simd_lid);
}
template <typename T, typename mma_t, typename loader_a_t, typename loader_b_t>
METAL_FUNC void gemm_loop_aligned(
threadgroup T* As,
threadgroup T* Bs,
thread mma_t& mma_op,
thread loader_a_t& loader_a,
thread loader_b_t& loader_b,
const int k_iterations) {
for (int k = 0; k < k_iterations; k++) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// Load elements into threadgroup memory
loader_a.load_unsafe();
loader_b.load_unsafe();
threadgroup_barrier(mem_flags::mem_threadgroup);
// Multiply and accumulate threadgroup elements
mma_op.mma(As, Bs);
// Prepare for next iteration
loader_a.next();
loader_b.next();
}
}
template <
bool rows_aligned,
bool cols_aligned,
bool transpose,
typename T,
typename mma_t,
typename loader_a_t,
typename loader_b_t>
METAL_FUNC void gemm_loop_unaligned(
threadgroup T* As,
threadgroup T* Bs,
thread mma_t& mma_op,
thread loader_a_t& loader_a,
thread loader_b_t& loader_b,
const int k_iterations,
const short tgp_bm,
const short tgp_bn,
const short tgp_bk) {
for (int k = 0; k < k_iterations; k++) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// Load elements into threadgroup memory
if (rows_aligned) {
loader_a.load_unsafe();
} else {
loader_a.load_safe(short2(tgp_bk, tgp_bm));
}
if (cols_aligned) {
loader_b.load_unsafe();
} else {
loader_b.load_safe(
transpose ? short2(tgp_bk, tgp_bn) : short2(tgp_bn, tgp_bk));
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Multiply and accumulate threadgroup elements
mma_op.mma(As, Bs);
// Prepare for next iteration
loader_a.next();
loader_b.next();
}
}
template <typename T, typename mma_t, typename loader_a_t, typename loader_b_t>
METAL_FUNC void gemm_loop_finalize(
threadgroup T* As,
threadgroup T* Bs,
thread mma_t& mma_op,
thread loader_a_t& loader_a,
thread loader_b_t& loader_b,
const short2 tile_a,
const short2 tile_b) {
loader_a.load_safe(tile_a);
loader_b.load_safe(tile_b);
threadgroup_barrier(mem_flags::mem_threadgroup);
mma_op.mma(As, Bs);
}
template <
typename T,
int group_size,
int bits,
int BM,
int BN,
int BK,
int WM,
int WN,
bool transpose>
[[kernel]] void gather_qmm_rhs(
const device T* x [[buffer(0)]],
const device uint32_t* w [[buffer(1)]],
const device T* scales [[buffer(2)]],
const device T* biases [[buffer(3)]],
const device uint32_t* indices [[buffer(4)]],
device T* y [[buffer(5)]],
const constant int& M [[buffer(6)]],
const constant int& N [[buffer(7)]],
const constant int& K [[buffer(8)]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_group_id [[simdgroup_index_in_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]]) {
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
constexpr int BK_padded = (BK + 16 / sizeof(T));
constexpr int BN_padded = (BN + 16 / sizeof(T));
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
constexpr int bytes_per_pack = power_of_2_bits ? 1 : 3;
using mma_t = mlx::steel::BlockMMA<
T,
T,
BM,
BN,
BK,
WM,
WN,
false,
transpose,
BK_padded,
transpose ? BK_padded : BN_padded>;
using loader_x_t =
mlx::steel::BlockLoader<T, BM, BK, BK_padded, 1, WM * WN * SIMD_SIZE>;
using loader_w_t = QuantizedBlockLoader<
T,
transpose ? BN : BK,
transpose ? BK : BN,
transpose ? BK_padded : BN_padded,
transpose,
WM * WN * SIMD_SIZE,
group_size,
bits>;
threadgroup T Xs[BM * BK_padded];
threadgroup T Ws[transpose ? BN * BK_padded : BK * BN_padded];
// Compute the block
const int K_w = K * bytes_per_pack / pack_factor;
const int K_g = K / group_size;
const int N_w = N * bytes_per_pack / pack_factor;
const int N_g = N / group_size;
const int K_it = K / BK;
const size_t stride_w = transpose ? N * K_w : K * N_w;
const size_t stride_s = transpose ? N * K_g : K * N_g;
const int y_row = tid.y * BM;
const int y_col = tid.x * BN;
const size_t y_row_long = size_t(y_row);
const size_t y_col_long = size_t(y_col);
// Prepare threadgroup bounds
const short tgp_bm = align_M ? BM : short(min(BM, M - y_row));
const short tgp_bn = align_N ? BN : short(min(BN, N - y_col));
// Calculate the final tiles in the case that K is not aligned
const int k_remain = K - K_it * BK;
const short2 tile_x = short2(k_remain, tgp_bm);
const short2 tile_w =
transpose ? short2(k_remain, tgp_bn) : short2(tgp_bn, k_remain);
// Move x and output to the correct block
auto wl = (const device uint8_t*)w;
x += y_row_long * K;
y += y_row_long * N + y_col_long;
wl += transpose ? y_col_long * K_w : y_col * bytes_per_pack / pack_factor;
scales += transpose ? y_col_long * K_g : y_col / group_size;
biases += transpose ? y_col_long * K_g : y_col / group_size;
// Do as many matmuls as necessary
uint32_t index;
short offset;
uint32_t index_next = indices[y_row];
short offset_next = 0;
int n = 0;
while (n < tgp_bm) {
n++;
offset = offset_next;
index = index_next;
offset_next = tgp_bm;
for (; n < tgp_bm; n++) {
if (indices[y_row + n] != index) {
offset_next = n;
index_next = indices[y_row + n];
break;
}
}
threadgroup_barrier(mem_flags::mem_none);
// Prepare threadgroup mma operation
thread mma_t mma_op(simd_group_id, simd_lane_id);
// Prepare threadgroup loading operations
thread loader_x_t loader_x(x, K, Xs, simd_group_id, simd_lane_id);
thread loader_w_t loader_w(
wl + index * stride_w,
scales + index * stride_s,
biases + index * stride_s,
transpose ? K : N,
Ws,
simd_group_id,
simd_lane_id);
// Matrices are all aligned check nothing
if (align_M && align_N) {
gemm_loop_aligned(Xs, Ws, mma_op, loader_x, loader_w, K_it);
if (!align_K) {
threadgroup_barrier(mem_flags::mem_threadgroup);
gemm_loop_finalize(Xs, Ws, mma_op, loader_x, loader_w, tile_x, tile_w);
}
// Store results to device memory
if (offset_next - offset == BM) {
mma_op.store_result(y, N);
} else {
mma_op.store_result_slice(
y, N, short2(0, offset), short2(BN, offset_next));
}
} else {
// Tile aligned so check outside of the hot loop
if ((align_M || tgp_bm == BM) && (align_N || tgp_bn == BN)) {
gemm_loop_aligned(Xs, Ws, mma_op, loader_x, loader_w, K_it);
if (!align_K) {
threadgroup_barrier(mem_flags::mem_threadgroup);
gemm_loop_finalize(
Xs, Ws, mma_op, loader_x, loader_w, tile_x, tile_w);
}
// Store results to device memory
if (offset_next - offset == BM) {
mma_op.store_result(y, N);
} else {
mma_op.store_result_slice(
y, N, short2(0, offset), short2(BN, offset_next));
}
}
// Tile partially aligned check rows
else if (align_N || tgp_bn == BN) {
gemm_loop_unaligned<false, true, transpose>(
Xs, Ws, mma_op, loader_x, loader_w, K_it, tgp_bm, tgp_bn, BK);
if (!align_K) {
threadgroup_barrier(mem_flags::mem_threadgroup);
gemm_loop_finalize(
Xs, Ws, mma_op, loader_x, loader_w, tile_x, tile_w);
}
mma_op.store_result_slice(
y, N, short2(0, offset), short2(BN, offset_next));
}
// Tile partially aligned check cols
else if (align_M || tgp_bm == BM) {
gemm_loop_unaligned<true, false, transpose>(
Xs, Ws, mma_op, loader_x, loader_w, K_it, tgp_bm, tgp_bn, BK);
if (!align_K) {
threadgroup_barrier(mem_flags::mem_threadgroup);
gemm_loop_finalize(
Xs, Ws, mma_op, loader_x, loader_w, tile_x, tile_w);
}
mma_op.store_result_slice(
y, N, short2(0, offset), short2(tgp_bn, offset_next));
}
// Nothing aligned so check both rows and cols
else {
gemm_loop_unaligned<false, false, transpose>(
Xs, Ws, mma_op, loader_x, loader_w, K_it, tgp_bm, tgp_bn, BK);
if (!align_K) {
threadgroup_barrier(mem_flags::mem_threadgroup);
gemm_loop_finalize(
Xs, Ws, mma_op, loader_x, loader_w, tile_x, tile_w);
}
mma_op.store_result_slice(
y, N, short2(0, offset), short2(tgp_bn, offset_next));
}
}
}
}
template <typename T, const int group_size, const int bits>
[[kernel]] void affine_quantize(
const device T* w [[buffer(0)]],

View File

@@ -60,6 +60,20 @@
bits, \
split_k)
#define instantiate_gather_qmm_rhs(func, name, type, group_size, bits, bm, bn, bk, wm, wn, transpose) \
instantiate_kernel( \
#name "_" #type "_gs_" #group_size "_b_" #bits "_bm_" #bm "_bn_" #bn "_bk_" #bk "_wm_" #wm "_wn_" #wn, \
func, \
type, \
group_size, \
bits, \
bm, \
bn, \
bk, \
wm, \
wn, \
transpose)
#define instantiate_quantized_batched_wrap(name, type, group_size, bits) \
instantiate_quantized_batched(name, type, group_size, bits, 1) \
instantiate_quantized_batched(name, type, group_size, bits, 0)
@@ -73,14 +87,14 @@
#define instantiate_quantized_all_single(type, group_size, bits) \
instantiate_quantized(affine_quantize, type, group_size, bits) \
instantiate_quantized(affine_dequantize, type, group_size, bits) \
instantiate_quantized(bs_qmv_fast, type, group_size, bits) \
instantiate_quantized(bs_qmv, type, group_size, bits) \
instantiate_quantized(bs_qvm, type, group_size, bits) \
instantiate_quantized(bs_qmm_n, type, group_size, bits)
instantiate_quantized(gather_qmv_fast, type, group_size, bits) \
instantiate_quantized(gather_qmv, type, group_size, bits) \
instantiate_quantized(gather_qvm, type, group_size, bits) \
instantiate_quantized(gather_qmm_n, type, group_size, bits)
#define instantiate_quantized_all_aligned(type, group_size, bits) \
instantiate_quantized_aligned(bs_qmm_t, type, group_size, bits, true) \
instantiate_quantized_aligned(bs_qmm_t, type, group_size, bits, false) \
instantiate_quantized_aligned(gather_qmm_t, type, group_size, bits, true) \
instantiate_quantized_aligned(gather_qmm_t, type, group_size, bits, false) \
instantiate_quantized_aligned_batched(qmm_t, type, group_size, bits, true, 1) \
instantiate_quantized_aligned_batched(qmm_t, type, group_size, bits, true, 0) \
instantiate_quantized_aligned_batched(qmm_t, type, group_size, bits, false, 1) \
@@ -96,12 +110,17 @@
instantiate_quantized_split_k(qvm_split_k, type, group_size, bits, 8) \
instantiate_quantized_split_k(qvm_split_k, type, group_size, bits, 32)
#define instantiate_quantized_all_rhs(type, group_size, bits) \
instantiate_gather_qmm_rhs(gather_qmm_rhs, gather_qmm_rhs_nt, type, group_size, bits, 16, 32, 32, 1, 2, true) \
instantiate_gather_qmm_rhs(gather_qmm_rhs, gather_qmm_rhs_nn, type, group_size, bits, 16, 32, 32, 1, 2, false)
#define instantiate_quantized_funcs(type, group_size, bits) \
instantiate_quantized_all_single(type, group_size, bits) \
instantiate_quantized_all_batched(type, group_size, bits) \
instantiate_quantized_all_aligned(type, group_size, bits) \
instantiate_quantized_all_quad(type, group_size, bits) \
instantiate_quantized_all_splitk(type, group_size, bits)
instantiate_quantized_all_splitk(type, group_size, bits) \
instantiate_quantized_all_rhs(type, group_size, bits)
#define instantiate_quantized_types(group_size, bits) \
instantiate_quantized_funcs(float, group_size, bits) \

View File

@@ -1908,8 +1908,7 @@ void GatherMM::eval_gpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc(out.nbytes()));
// Extract shapes strides from inputs and copy in case of non-contiguous
// vectors.
// Extract shapes from inputs.
int M = a.shape(-2);
int N = b.shape(-1);
int K = a.shape(-1);

View File

@@ -269,4 +269,21 @@ MTL::ComputePipelineState* get_quantized_kernel(
return d.get_kernel(kernel_name);
}
MTL::ComputePipelineState* get_gather_qmm_kernel(
metal::Device& d,
const std::string& kernel_name,
const std::string& hash_name,
const metal::MTLFCList& func_consts,
const array&,
int,
int,
int,
int,
int,
int,
int,
bool) {
return d.get_kernel(kernel_name, "mlx", hash_name, func_consts);
}
} // namespace mlx::core

File diff suppressed because it is too large Load Diff